1,736 research outputs found

    Deriving Inverse Operators for Modal Logic

    Get PDF
    International audienceSpatial constraint systems are algebraic structures from concurrent constraint programming to specify spatial and epistemic behavior in multi-agent systems. We shall use spatial constraint systems to give an abstract characterization of the notion of normality in modal logic and to derive right inverse/reverse operators for modal languages. In particular, we shall identify the weakest condition for the existence of right inverses and show that the abstract notion of normality corresponds to the preservation of finite suprema. We shall apply our results to existing modal languages such as the weakest normal modal logic, Hennessy-Milner logic, and linear-time temporal logic. We shall discuss our results in the context of modal concepts such as bisimilarity and inconsistency invariance

    On P-transitive graphs and applications

    Full text link
    We introduce a new class of graphs which we call P-transitive graphs, lying between transitive and 3-transitive graphs. First we show that the analogue of de Jongh-Sambin Theorem is false for wellfounded P-transitive graphs; then we show that the mu-calculus fixpoint hierarchy is infinite for P-transitive graphs. Both results contrast with the case of transitive graphs. We give also an undecidability result for an enriched mu-calculus on P-transitive graphs. Finally, we consider a polynomial time reduction from the model checking problem on arbitrary graphs to the model checking problem on P-transitive graphs. All these results carry over to 3-transitive graphs.Comment: In Proceedings GandALF 2011, arXiv:1106.081

    Well-orders in the transfinite Japaridze algebra

    Full text link
    This paper studies the transfinite propositional provability logics \glp_\Lambda and their corresponding algebras. These logics have for each ordinal ξ<Λ\xi< \Lambda a modality \la \alpha \ra. We will focus on the closed fragment of \glp_\Lambda (i.e., where no propositional variables occur) and \emph{worms} therein. Worms are iterated consistency expressions of the form \la \xi_n\ra \ldots \la \xi_1 \ra \top. Beklemishev has defined well-orderings <ξ<_\xi on worms whose modalities are all at least ξ\xi and presented a calculus to compute the respective order-types. In the current paper we present a generalization of the original <ξ<_\xi orderings and provide a calculus for the corresponding generalized order-types oξo_\xi. Our calculus is based on so-called {\em hyperations} which are transfinite iterations of normal functions. Finally, we give two different characterizations of those sequences of ordinals which are of the form \la {\formerOmega}_\xi (A) \ra_{\xi \in \ord} for some worm AA. One of these characterizations is in terms of a second kind of transfinite iteration called {\em cohyperation.}Comment: Corrected a minor but confusing omission in the relation between Veblen progressions and hyperation

    Modal Approach to Casimir Forces in Periodic Structures

    Full text link
    We present a modal approach to calculate finite temperature Casimir interactions between two periodically modulated surfaces. The scattering formula is used and the reflection matrices of the patterned surfaces are calculated decomposing the electromagnetic field into the natural modes of the structures. The Casimir force gradient from a deeply etched silicon grating is evaluated using the modal approach and compared to experiment for validation. The Casimir force from a two dimensional periodic structure is computed and deviations from the proximity force approximation examined.Comment: 13 pages, 7 figure

    On the Expressiveness of Spatial Constraint Systems

    Get PDF
    In this paper we shall report on our progress using spatial constraint system as an abstract representation of modal and epistemic behaviour. First we shall give an introduction as well as the background to our work. Then, we present our preliminary results on the representation of modal behaviour by using spatial constraint systems. Then, we present our ongoing work on the characterization of the epistemic notion of knowledge. Finally, we discuss about the future work of our research

    Fredkin Gates for Finite-valued Reversible and Conservative Logics

    Full text link
    The basic principles and results of Conservative Logic introduced by Fredkin and Toffoli on the basis of a seminal paper of Landauer are extended to d-valued logics, with a special attention to three-valued logics. Different approaches to d-valued logics are examined in order to determine some possible universal sets of logic primitives. In particular, we consider the typical connectives of Lukasiewicz and Godel logics, as well as Chang's MV-algebras. As a result, some possible three-valued and d-valued universal gates are described which realize a functionally complete set of fundamental connectives.Comment: 57 pages, 10 figures, 16 tables, 2 diagram

    Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    Get PDF
    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects
    • …
    corecore