38,914 research outputs found

    A Pragmatic Look at Deep Imitation Learning

    Full text link
    The introduction of the generative adversarial imitation learning (GAIL) algorithm has spurred the development of scalable imitation learning approaches using deep neural networks. Many of the algorithms that followed used a similar procedure, combining on-policy actor-critic algorithms with inverse reinforcement learning. More recently there have been an even larger breadth of approaches, most of which use off-policy algorithms. However, with the breadth of algorithms, everything from datasets to base reinforcement learning algorithms to evaluation settings can vary, making it difficult to fairly compare them. In this work we re-implement 6 different IL algorithms, updating 3 of them to be off-policy, base them on a common off-policy algorithm (SAC), and evaluate them on a widely-used expert trajectory dataset (D4RL) for the most common benchmark (MuJoCo). After giving all algorithms the same hyperparameter optimisation budget, we compare their results for a range of expert trajectories. In summary, GAIL, with all of its improvements, consistently performs well across a range of sample sizes, AdRIL is a simple contender that performs well with one important hyperparameter to tune, and behavioural cloning remains a strong baseline when data is more plentiful.Comment: Asian Conference on Machine Learning, 202

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar

    An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning

    Full text link
    DQN (Deep Q-Network) is a method to perform Q-learning for reinforcement learning using deep neural networks. DQNs require a large buffer and batch processing for an experience replay and rely on a backpropagation based iterative optimization, making them difficult to be implemented on resource-limited edge devices. In this paper, we propose a lightweight on-device reinforcement learning approach for low-cost FPGA devices. It exploits a recently proposed neural-network based on-device learning approach that does not rely on the backpropagation method but uses OS-ELM (Online Sequential Extreme Learning Machine) based training algorithm. In addition, we propose a combination of L2 regularization and spectral normalization for the on-device reinforcement learning so that output values of the neural network can be fit into a certain range and the reinforcement learning becomes stable. The proposed reinforcement learning approach is designed for PYNQ-Z1 board as a low-cost FPGA platform. The evaluation results using OpenAI Gym demonstrate that the proposed algorithm and its FPGA implementation complete a CartPole-v0 task 29.77x and 89.40x faster than a conventional DQN-based approach when the number of hidden-layer nodes is 64
    • …
    corecore