642 research outputs found

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    New measurements techniques:Optical methods for characterizing sound fields

    Get PDF

    Radon spectrogram-based approach for automatic IFs separation

    Get PDF
    The separation of overlapping components is a well-known and difficult problem in multicomponent signals analysis and it is shared by applications dealing with radar, biosonar, seismic, and audio signals. In order to estimate the instantaneous frequencies of a multicomponent signal, it is necessary to disentangle signal modes in a proper domain. Unfortunately, if signal modes supports overlap both in time and frequency, separation is only possible through a parametric approach whenever the signal class is a priori fixed. In this work, time-frequency analysis and Radon transform are jointly used for the unsupervised separation of modes of a generic frequency modulated signal in noisy environment. The proposed method takes advantage of the ability of the Radon transform of a proper time-frequency distribution in separating overlapping modes. It consists of a blind segmentation of signal components in Radon domain by means of a near-to-optimal threshold operation. The inversion of the Radon transform on each detected region allows us to isolate the instantaneous frequency curves of each single mode in the time-frequency domain. Experimental results performed on constant amplitudes chirp signals confirm the effectiveness of the proposed method, opening the way for its extension to more complex frequency modulated signals

    Analysis and decomposition of frequency modulated multicomponent signals

    Get PDF
    Frequency modulated (FM) signals are studied in many research fields, including seismology, astrophysics, biology, acoustics, animal echolocation, radar and sonar. They are referred as multicomponent signals (MCS), as they are generally composed of multiple waveforms, with specific time-dependent frequencies, known as instantaneous frequencies (IFs). Many applications require the extraction of signal characteristics (i.e. amplitudes and IFs). that is why MCS decomposition is an important topic in signal processing. It consists of the recovery of each individual mode and it is often performed by IFs separation. The task becomes very challenging if the signal modes overlap in the TF domain, i.e. they interfere with each other, at the so-called non-separability region. For this reason, a general solution to MCS decomposition is not available yet. As a matter of fact, the existing methods addressing overlapping modes share the same limitations: they are parametric, therefore they adapt only to the assumed signal class, or they rely on signal-dependent and parametric TF representations; otherwise, they are interpolation techniques, i.e. they almost ignore the information corrupted by interference and they recover IF curve by some fitting procedures, resulting in high computational cost and bad performances against noise. This thesis aims at overcoming these drawbacks, providing efficient tools for dealing with MCS with interfering modes. An extended state-of-the-art revision is provided, as well as the mathematical tools and the main definitions needed to introduce the topic. Then, the problem is addressed following two main strategies: the former is an iterative approach that aims at enhancing MCS' resolution in the TF domain; the latter is a transform-based approach, that combines TF analysis and Radon Transform for separating individual modes. As main advantage, the methods derived from both the iterative and the transform-based approaches are non-parametric, as they do not require specific assumptions on the signal class. As confirmed by the experimental results and the comparative studies, the proposed approach contributes to the current state of the-art improvement

    Novel classification algorithm for ballistic target based on HRRP frame

    Get PDF
    Nowadays the identification of ballistic missile warheads in a cloud of decoys and debris is essential for defence systems in order to optimize the use of ammunition resources, avoiding to run out of all the available interceptors in vain. This paper introduces a novel solution for the classification of ballistic targets based on the computation of the inverse Radon transform of the target signatures, represented by a high resolution range profile frame acquired within an entire period of the main rotation of the target. Namely, the precession for warheads and the tumbling for decoys are taken into account. Following, the pseudo-Zernike moments of the resulting transformation are evaluated as the final feature vector for the classifier. The extracted features guarantee robustness against target's dimensions and rotation velocity, and the initial phase of the target's motion. The classification results on simulated data are shown for different polarizations of the electromagnetic radar waveform and for various operational conditions, confirming the validity of the algorithm

    Flame front propagation velocity measurement and in-cylinder combustion reconstruction using POET

    Get PDF
    The objective of this thesis is to develop an intelligent diagnostic technique POET (Passive Optical Emission Tomography) for the investigation of in cylinder combustion chemiluminescence. As a non-intrusive optical system, the POET system employs 40 fibre optic cables connected to 40 PMTs (Photo Multiplier Tube) to monitor the combustion process and flame front propagation in a modified commercial OHV (Over Head Valve) Pro 206 IC engine. The POET approach overcomes several limitations of present combustion research methods using a combination of fibre optic detection probes, photomultipliers and a tomographic diagnostics. The fibre optic probes are placed on a specially designed cylinder head gasket for non-invasively inserting cylinder. Each independent probe can measure the turbulent chemiluminescence of combustion flame front at up to 20 kHz. The resultant intensities can then be gathered tomographically using MART (Multiplicative Algebraic Reconstruction Technique) software to reconstruct an image of the complete flame-front. The approach is essentially a lensless imaging technique, which has the advantage of not requiring a specialized engine construction with conventional viewing ports to visualize the combustion image. The fibre optic system, through the use of 40, 2m long thermally isolated fibre optic cables can withstand combustion temperatures and is immune from electronic noise, typically generated by the spark plug. The POET system uses a MART tomographic methodology to reconstruct the turbulent combustion process. The data collected has been reconstructed to produce a temporal and spatial image of the combustion flame front. The variations of lame turbulence are monitored by sequences of reconstructed images. Therefore, the POET diagnostic technique reduces the complications of classic flame front propagation measurement systems and successfully demonstrates the in-cylinder combustion process. In this thesis, a series of calibration exercises have been performed to ensure that the photomultipliers of the POET system have sufficient temporal and spatial resolution to quantitatively map the flow velocity turbulence and chemiluminescence of the flame front. In the results, the flame has been analyzed using UV filters and blue filters to monitor the modified natural gas fuel engine. The flame front propagation speed has been evaluated and it is, on average, 12 m/s at 2280 rpm. Sequences of images have been used to illustrate the combustion explosion process at different rpm

    Boosting the sensitivity of continuous gravitational waves all-sky searches using advanced filtering techniques

    Get PDF
    The work presented in this PhD thesis has been done in the context of gravitational-waves searches. Since the first detection on the 14th September 2015 by the LIGO-Virgo collaboration, a growing number of gravitational-wave events has been detected, all emitted by the coalescence of binary systems involving black holes and/or neutron stars. My work is focused on the search for continuous gravitational waves, which still miss the first detection. These signals are expected to be emitted, for instance, by spinning neutron stars with an asymmetric shape with respect to the rotation axis, and are at least five orders of magnitude weaker than the typical amplitude of detected binary coalescences. In this PhD thesis I report on the work done in four different projects, with the common purpose of increasing the sensitivity of continuous-wave searches, involving both data analysis and instrumental aspects. The first project is a contribution to the commissioning of the Virgo interferometer in view of the next observing run, O4, which will start in May 2023. My contribution has been mainly devoted to the noise hunting activity, focused on the identification and mitigation of instrumental-noise sources that can degrade the sensitivity of continuous-wave searches. The other three projects are related to data analysis. I have focused, in particular, on all-sky searches for sources without electromagnetic counterpart and long-lasting signals from rapidly evolving newly-born neutron stars. I have studied in great detail the robustness of an all-sky data analysis method in the case of overlapping signals. This is relevant for some exotic classes of continuous wave sources and, more generally, in view of third generation detectors, like Einstein Telescope. I have developed a two-dimensional filter, called triangular filter, to be applied to the search for long-lasting gravitational waves from unstable neutron stars, showing that thanks to this method an increase of the search sensitivity of about 20%20\% is achievable. Finally, I describe the first steps of a wide work to develop a new procedure for all-sky continuous-wave searches, exploiting a statistics based on the sidereal modulation, that affects astrophysical signals, due to the Earth rotation

    Characterization of Microwave Discharge Plasmas for Surface Processing

    Get PDF
    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency Ć’ = 2.45 GHz and a pulse repetitive MW discharge in air at Ć’ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance

    Ultrasound transmission tomography : a low-cost realization

    Get PDF
    +169hlm.;24c

    A signal complexity-based approach for AM–FM signal modes counting

    Get PDF
    I segnali modulati in frequenza appaiono in molte discipline applicate, tra cui la geologia, la comunicazione, la biologia e l'acustica. Questi sono multicomponenti, cioè consistono in forme d'onda multiple, con frequenza specifica dipendente dal tempo (frequenza istantanea). Nella maggior parte delle applicazioni pratiche, il numero di modalità - che è sconosciuto - è necessario per analizzare correttamente un segnale; per esempio per separare ogni singolo componente e per stimare la sua frequenza istantanea. Il rilevamento del numero di componenti è un problema impegnativo, specialmente nel caso di modalità che interferiscono. L'approccio basato sull'entropia di Rényi si è dimostrato adatto per il conteggio delle modalità di un segnale, ma è limitato a componenti ben separate. Il presente documento affronta questo problema introducendo una nuova nozione di complessità del segnale. In particolare, lo spettrogramma di un segnale multicomponente è visto come un processo non stazionario in cui l'interferenza si alterna alla non interferenza. La complessità relativa alla transizione tra sezioni consecutive dello spettrogramma viene valutata mediante la Run Length Encoding. Sulla base di una legge di evoluzione tempo-frequenza dello spettrogramma, le variazioni di complessità sono studiate per stimare accuratamente il numero di componenti. Il metodo presentato è adatto a segnali multicomponente con modalità non separabili, così come ad ampiezze variabili nel tempo e mostra robustezza al rumore.Frequency modulated signals appear in many applied disciplines, including geology, communication, biology and acoustics. They are naturally 1multicomponent, i.e., they consist of multiple waveforms, with specific time-dependent frequency (instantaneous frequency). In most practical applications, the number of modes—which is unknown—is needed for correctly analyzing a signal; for instance for separating each individual component and for estimating its instantaneous frequency. Detecting the number of components is a challenging problem, especially in the case of interfering modes. The Rényi Entropy-based approach has proven to be suitable for signal modes counting, but it is limited to well separated components. This paper addresses this issue by introducing a new notion of signal complexity. Specifically, the spectrogram of a multicomponent signal is seen as a non-stationary process where interference alternates with non-interference. Complexity concerning the transition between consecutive spectrogram sections is evaluated by means of a modified Run Length Encoding. Based on a spectrogram time-frequency evolution law, complexity variations are studied for accurately estimating the number of components. The presented method is suitable for multicomponent signals with non-separable modes, as well as time-varying amplitudes, showing robustness to noise
    • …
    corecore