16,671 research outputs found

    On the Adjoint Operator in Photoacoustic Tomography

    Get PDF
    Photoacoustic Tomography (PAT) is an emerging biomedical "imaging from coupled physics" technique, in which the image contrast is due to optical absorption, but the information is carried to the surface of the tissue as ultrasound pulses. Many algorithms and formulae for PAT image reconstruction have been proposed for the case when a complete data set is available. In many practical imaging scenarios, however, it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. In such cases, image reconstruction algorithms that can incorporate prior knowledge to ameliorate the loss of data are required. Hence, recently there has been an increased interest in using variational image reconstruction. A crucial ingredient for the application of these techniques is the adjoint of the PAT forward operator, which is described in this article from physical, theoretical and numerical perspectives. First, a simple mathematical derivation of the adjoint of the PAT forward operator in the continuous framework is presented. Then, an efficient numerical implementation of the adjoint using a k-space time domain wave propagation model is described and illustrated in the context of variational PAT image reconstruction, on both 2D and 3D examples including inhomogeneous sound speed. The principal advantage of this analytical adjoint over an algebraic adjoint (obtained by taking the direct adjoint of the particular numerical forward scheme used) is that it can be implemented using currently available fast wave propagation solvers.Comment: submitted to "Inverse Problems

    Identification of transient heat sources using the reciprocity gap

    No full text
    International audienceThe deformation of solid materials is nearly always accompanied with temperature variations, induced by intrinsic dissipation and thermomechanical coupling. Heat sources give precious information on the thermomechanical behavior of materials. They can be indirectly observed from thermal measurements on the specimen boundary, obtained e.g. via infrared thermography. To solve the inverse problem of identifying heat sources from such observations, a non-iterative algebraical method based on the Reciprocity Gap Method is proposed. This approach, used elsewhere mainly for time-independent identification, is applied here to transient measurements. Under appropriate modelling assumptions the number of heat sources, their spatial locations and energies are retrieved, as demonstrated on numerical experiments where the robustness of the method to measurement noise is also studied

    Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation

    Get PDF
    Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we begin by providing an overview of forward modelling methods, before deriving a linearised diffusion-style model which calculates the first-harmonic modulated flux measured on the boundary of a given domain. We derive and examine the correlation measurement density functions of the model which describe the sensitivity of the modality to perturbations in the optical parameters of interest. Finally, we employ said functions in the development of an adjoint-assisted gradient based image reconstruction method, which ameliorates the computational burden and memory requirements of a traditional Newton-based optimisation approach. We validate our work by performing reconstructions of optical absorption and scattering in two- and three-dimensions using simulated measurements with 1% proportional Gaussian noise, and demonstrate the successful recovery of the parameters to within +/-5% of their true values when the resolution of the ultrasound raster probing the domain is sufficient to delineate perturbing inclusions.Comment: 12 pages, 6 figure
    • …
    corecore