580,859 research outputs found

    Using mixed data in the inverse scattering problem

    Full text link
    Consider the fixed-ℓ\ell inverse scattering problem. We show that the zeros of the regular solution of the Schr\"odinger equation, rn(E)r_{n}(E), which are monotonic functions of the energy, determine a unique potential when the domain of the energy is such that the rn(E)r_{n}(E) range from zero to infinity. This suggests that the use of the mixed data of phase-shifts {δ(ℓ0,k),k≥k0}∪{δ(ℓ,k0),ℓ≥ℓ0}\{\delta(\ell_0,k), k \geq k_0 \} \cup \{\delta(\ell,k_0), \ell \geq \ell_0 \}, for which the zeros of the regular solution are monotonic in both domains, and range from zero to infinity, offers the possibility of determining the potential in a unique way.Comment: 9 pages, 2 figures. Talk given at the Conference of Inverse Quantum Scattering Theory, Hungary, August 200

    Direct and inverse spectral theorems for a class of canonical systems with two singular endpoints

    Full text link
    Part I of this paper deals with two-dimensional canonical systems y′(x)=yJH(x)y(x)y'(x)=yJH(x)y(x), x∈(a,b)x\in(a,b), whose Hamiltonian HH is non-negative and locally integrable, and where Weyl's limit point case takes place at both endpoints aa and bb. We investigate a class of such systems defined by growth restrictions on H towards a. For example, Hamiltonians on (0,∞)(0,\infty) of the form H(x):=(x−α001)H(x):=\begin{pmatrix}x^{-\alpha}&0\\ 0&1\end{pmatrix} where α<2\alpha<2 are included in this class. We develop a direct and inverse spectral theory parallel to the theory of Weyl and de Branges for systems in the limit circle case at aa. Our approach proceeds via - and is bound to - Pontryagin space theory. It relies on spectral theory and operator models in such spaces, and on the theory of de Branges Pontryagin spaces. The main results concerning the direct problem are: (1) showing existence of regularized boundary values at aa; (2) construction of a singular Weyl coefficient and a scalar spectral measure; (3) construction of a Fourier transform and computation of its action and the action of its inverse as integral transforms. The main results for the inverse problem are: (4) characterization of the class of measures occurring above (positive Borel measures with power growth at ±∞\pm\infty); (5) a global uniqueness theorem (if Weyl functions or spectral measures coincide, Hamiltonians essentially coincide); (6) a local uniqueness theorem. In Part II of the paper the results of Part I are applied to Sturm--Liouville equations with singular coefficients. We investigate classes of equations without potential (in particular, equations in impedance form) and Schr\"odinger equations, where coefficients are assumed to be singular but subject to growth restrictions. We obtain corresponding direct and inverse spectral theorems
    • …
    corecore