122 research outputs found

    AAS/GSFC 13th International Symposium on Space Flight Dynamics

    Get PDF
    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design

    Optimal Spacecraft Guidance

    Get PDF
    This book is designed for a one-semester course at Utah State University titled MAE 6570 Optimal Spacecraft Guidance. The class meets for 75 minutes, twice per week, for 14 weeks. There are no prerequisites other than graduate standing in engineering. Proficiency in calculus, differential equations, linear algebra, and computer programming is required. Students find that previous experience in space dynamics, linear multivariable control, or optimal control is helpful. The goal of the book and course is for students to develop fundamental skills needed to do professional work in the area of spacecraft guidance. After working through the book, students should have an understanding of the linear quadratic framework, E-guidance, Q-guidance, Apollo descent guidance, and more. To this end, the book contains seven chapters. An approximate timeline for the course is the following. • Chapter 1 | Week 1 • Chapter 2 | Weeks 2 and 3 • Chapter 3 | Weeks 4 and 5 • Chapter 4 | Weeks 6, 7, and 8 • Chapter 5 | Weeks 9 and 10 • Chapter 6 | Weeks 11 and 12 • Chapter 7 | Weeks 13 and 14 Three dynamical models are used throughout to illustrate the concepts. These models are a nonlinear two-body model, a linear flat planet model, and a linear relative orbital motion model. A key feature of the book is its integration of MATLAB implementations into the text as early as possible. For example, Chapter 1 includes a Q-guidance implementation, Chapter 2 includes a polynomial guidance implementation, and so on. Each chapter ends with a set of problems suitable for independent homework. Several of the chapter problems require modification or extension of these implementations. The final two chapters focus on descent guidance and ascent guidance. By this point, students are expected to be coding independently

    Autonomous vision-based terrain-relative navigation for planetary exploration

    Get PDF
    Abstract: The interest of major space agencies in the world for vision sensors in their mission designs has been increasing over the years. Indeed, cameras offer an efficient solution to address the ever-increasing requirements in performance. In addition, these sensors are multipurpose, lightweight, proven and a low-cost technology. Several researchers in vision sensing for space application currently focuse on the navigation system for autonomous pin-point planetary landing and for sample and return missions to small bodies. In fact, without a Global Positioning System (GPS) or radio beacon around celestial bodies, high-accuracy navigation around them is a complex task. Most of the navigation systems are based only on accurate initialization of the states and on the integration of the acceleration and the angular rate measurements from an Inertial Measurement Unit (IMU). This strategy can track very accurately sudden motions of short duration, but their estimate diverges in time and leads normally to high landing error. In order to improve navigation accuracy, many authors have proposed to fuse those IMU measurements with vision measurements using state estimators, such as Kalman filters. The first proposed vision-based navigation approach relies on feature tracking between sequences of images taken in real time during orbiting and/or landing operations. In that case, image features are image pixels that have a high probability of being recognized between images taken from different camera locations. By detecting and tracking these features through a sequence of images, the relative motion of the spacecraft can be determined. This technique, referred to as Terrain-Relative Relative Navigation (TRRN), relies on relatively simple, robust and well-developed image processing techniques. It allows the determination of the relative motion (velocity) of the spacecraft. Despite the fact that this technology has been demonstrated with space qualified hardware, its gain in accuracy remains limited since the spacecraft absolute position is not observable from the vision measurements. The vision-based navigation techniques currently studied consist in identifying features and in mapping them into an on-board cartographic database indexed by an absolute coordinate system, thereby providing absolute position determination. This technique, referred to as Terrain-Relative Absolute Navigation (TRAN), relies on very complex Image Processing Software (IPS) having an obvious lack of robustness. In fact, these software depend often on the spacecraft attitude and position, they are sensitive to illumination conditions (the elevation and azimuth of the Sun when the geo-referenced database is built must be similar to the ones present during mission), they are greatly influenced by the image noise and finally they hardly manage multiple varieties of terrain seen during the same mission (the spacecraft can fly over plain zone as well as mountainous regions, the images may contain old craters with noisy rims as well as young crater with clean rims and so on). At this moment, no real-time hardware-in-the-loop experiment has been conducted to demonstrate the applicability of this technology to space mission. The main objective of the current study is to develop autonomous vision-based navigation algorithms that provide absolute position and surface-relative velocity during the proximity operations of a planetary mission (orbiting phase and landing phase) using a combined approach of TRRN and TRAN technologies. The contributions of the study are: (1) reference mission definition, (2) advancements in the TRAN theory (image processing as well as state estimation) and (3) practical implementation of vision-based navigation.Résumé: L’intérêt des principales agences spatiales envers les technologies basées sur la vision artificielle ne cesse de croître. En effet, les caméras offrent une solution efficace pour répondre aux exigences de performance, toujours plus élevées, des missions spatiales. De surcroît, ces capteurs sont multi-usages, légers, éprouvés et peu coûteux. Plusieurs chercheurs dans le domaine de la vision artificielle se concentrent actuellement sur les systèmes autonomes pour l’atterrissage de précision sur des planètes et sur les missions d’échantillonnage sur des astéroïdes. En effet, sans système de positionnement global « Global Positioning System (GPS) » ou de balises radio autour de ces corps célestes, la navigation de précision est une tâche très complexe. La plupart des systèmes de navigation sont basés seulement sur l’intégration des mesures provenant d’une centrale inertielle. Cette stratégie peut être utilisée pour suivre les mouvements du véhicule spatial seulement sur une courte durée, car les données estimées divergent rapidement. Dans le but d’améliorer la précision de la navigation, plusieurs auteurs ont proposé de fusionner les mesures provenant de la centrale inertielle avec des mesures d’images du terrain. Les premiers algorithmes de navigation utilisant l’imagerie du terrain qui ont été proposés reposent sur l’extraction et le suivi de traits caractéristiques dans une séquence d’images prises en temps réel pendant les phases d’orbite et/ou d’atterrissage de la mission. Dans ce cas, les traits caractéristiques de l’image correspondent à des pixels ayant une forte probabilité d’être reconnus entre des images prises avec différentes positions de caméra. En détectant et en suivant ces traits caractéristiques, le déplacement relatif du véhicule (la vitesse) peut être déterminé. Ces techniques, nommées navigation relative, utilisent des algorithmes de traitement d’images robustes, faciles à implémenter et bien développés. Bien que cette technologie a été éprouvée sur du matériel de qualité spatiale, le gain en précision demeure limité étant donné que la position absolue du véhicule n’est pas observable dans les mesures extraites de l’image. Les techniques de navigation basées sur la vision artificielle actuellement étudiées consistent à identifier des traits caractéristiques dans l’image pour les apparier avec ceux contenus dans une base de données géo-référencées de manière à fournir une mesure de position absolue au filtre de navigation. Cependant, cette technique, nommée navigation absolue, implique l’utilisation d’algorithmes de traitement d’images très complexes souffrant pour le moment des problèmes de robustesse. En effet, ces algorithmes dépendent souvent de la position et de l’attitude du véhicule. Ils sont très sensibles aux conditions d’illuminations (l’élévation et l’azimut du Soleil présents lorsque la base de données géo-référencée est construite doit être similaire à ceux observés pendant la mission). Ils sont grandement influencés par le bruit dans l’image et enfin ils supportent mal les multiples variétés de terrain rencontrées pendant la même mission (le véhicule peut survoler autant des zones de plaine que des régions montagneuses, les images peuvent contenir des vieux cratères avec des contours flous aussi bien que des cratères jeunes avec des contours bien définis, etc.). De plus, actuellement, aucune expérimentation en temps réel et sur du matériel de qualité spatiale n’a été réalisée pour démontrer l’applicabilité de cette technologie pour les missions spatiales. Par conséquent, l’objectif principal de ce projet de recherche est de développer un système de navigation autonome par imagerie du terrain qui fournit la position absolue et la vitesse relative au terrain d’un véhicule spatial pendant les opérations à basse altitude sur une planète. Les contributions de ce travail sont : (1) la définition d’une mission de référence, (2) l’avancement de la théorie de la navigation par imagerie du terrain (algorithmes de traitement d’images et estimation d’états) et (3) implémentation pratique de cette technologie

    Publications of the Jet Propulsion Laboratory, July 1969 - June 1970

    Get PDF
    JPL bibliography of technical reports released from July 1969 through June 197

    Research and technology operating plan: A summary Fiscal Year 1974

    Get PDF
    A compilation is presented of the summary portions of RTOPs used for management review and control of research. Citations and abstracts of RTOPs are included. A list is presented of RTOPs which have been changed, completed, or terminated since the last summary. Indexes presented include: subject, technical monitor, responsible NASA organization, and RTOP number

    Commonwealth of Independent States aerospace science and technology, 1992: A bibliography with indexes

    Get PDF
    This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences

    Numerical optimal control with applications in aerospace

    Get PDF
    This thesis explores various computational aspects of solving nonlinear, continuous-time dynamic optimization problems (DOPs) numerically. Firstly, a direct transcription method for solving DOPs is proposed, named the integrated residual method (IRM). Instead of forcing the dynamic constraints to be satisfied only at a selected number of points as in direct collocation, this new approach alternates between minimizing and constraining the squared norm of the dynamic constraint residuals integrated along the whole solution trajectories. The method is capable of obtaining solutions of higher accuracy for the same mesh compared to direct collocation methods, enabling a flexible trade-off between solution accuracy and optimality, and providing reliable solutions for challenging problems, including those with singular arcs and high-index differential-algebraic equations. A number of techniques have also been proposed in this work for efficient numerical solution of large scale and challenging DOPs. A general approach for direct implementation of rate constraints on the discretization mesh is proposed. Unlike conventional approaches that may lead to singular control arcs, the solution of this on-mesh implementation has better numerical properties, while achieving computational speedups. Another development is related to the handling of inactive constraints, which do not contribute to the solution of DOPs, but increase the problem size and burden the numerical computations. A strategy to systematically remove the inactive and redundant constraints under a mesh refinement framework is proposed. The last part of this work focuses on the use of DOPs in aerospace applications, with a number of topics studied. Using example scenarios of intercontinental flights, the benefits of formulating DOPs directly according to problem specifications are demonstrated, with notable savings in fuel usage. The numerical challenges with direct collocation are also identified, with the IRM obtaining solutions of higher accuracy, and at the same time suppressing the singular arc fluctuations.Open Acces

    Optimal Designs of Mobile Nuclear Engines to Power Manned Vehicles On Mars

    Get PDF
    This work develops original conceptual designs for compact nuclear fission reactor engines to power robust mobile equipment operating on the surface of the planet Mars. This is a nuclear application area not well explored in previous publications. Some novel analytical approaches are developed herein, including the application of optimal control theory to minimize radiation shielding mass. This work also provides the first study of using another planet\u27s atmosphere to implement open-cycle thermal conversion systems. To power equipment on Mars for extended durations at sustained power levels ranging from one hundred horsepower to several thousand horsepower, there is no practical alternative to a nuclear fission heat source. Design difficulties arise from mobility\u27s need to restrict engine size and mass, each of which is, in turn, determined by the schemes chosen for thermal conversion waste heat rejection and for neutron and gamma radiation shielding. The conceptual design solutions pursued herein entirely avoid a large waste heat rejection radiator or low pressure heat exchanger by instead using the martian air directly as the thermal conversion fluid. This Open Brayton Cycle implementation unconventionally employs large-diameter radial-flow compressor/turbine designs for the lower pressure air-flow stages in order to obtain sufficient efficiency from the low pressure martian air. Design prescriptions and analyses for these rotating components are included. The radiation shielding mass has been minimized by numerical algorithms developed as part of this work to solve the Euler-Lagrange equations for a minimum mass shield meeting stated radiation leakage requirements. In addition, a risk-balancing approach is taken to setting those radiation requirements in order to avoid excessive conservatism

    Fourth NASA Inter-Center Control Systems Conference

    Get PDF
    Space vehicle control applications are discussed, along with aircraft guidance, control, and handling qualities. System simulation and identification, engine control, advanced propulsion techniques, and advanced control techniques are also included
    • …
    corecore