839 research outputs found

    Inverse Optimization of Convex Risk Functions

    Full text link
    The theory of convex risk functions has now been well established as the basis for identifying the families of risk functions that should be used in risk averse optimization problems. Despite its theoretical appeal, the implementation of a convex risk function remains difficult, as there is little guidance regarding how a convex risk function should be chosen so that it also well represents one's own risk preferences. In this paper, we address this issue through the lens of inverse optimization. Specifically, given solution data from some (forward) risk-averse optimization problems we develop an inverse optimization framework that generates a risk function that renders the solutions optimal for the forward problems. The framework incorporates the well-known properties of convex risk functions, namely, monotonicity, convexity, translation invariance, and law invariance, as the general information about candidate risk functions, and also the feedbacks from individuals, which include an initial estimate of the risk function and pairwise comparisons among random losses, as the more specific information. Our framework is particularly novel in that unlike classical inverse optimization, no parametric assumption is made about the risk function, i.e. it is non-parametric. We show how the resulting inverse optimization problems can be reformulated as convex programs and are polynomially solvable if the corresponding forward problems are polynomially solvable. We illustrate the imputed risk functions in a portfolio selection problem and demonstrate their practical value using real-life data

    Inverse Optimization: Closed-form Solutions, Geometry and Goodness of fit

    Full text link
    In classical inverse linear optimization, one assumes a given solution is a candidate to be optimal. Real data is imperfect and noisy, so there is no guarantee this assumption is satisfied. Inspired by regression, this paper presents a unified framework for cost function estimation in linear optimization comprising a general inverse optimization model and a corresponding goodness-of-fit metric. Although our inverse optimization model is nonconvex, we derive a closed-form solution and present the geometric intuition. Our goodness-of-fit metric, ρ\rho, the coefficient of complementarity, has similar properties to R2R^2 from regression and is quasiconvex in the input data, leading to an intuitive geometric interpretation. While ρ\rho is computable in polynomial-time, we derive a lower bound that possesses the same properties, is tight for several important model variations, and is even easier to compute. We demonstrate the application of our framework for model estimation and evaluation in production planning and cancer therapy

    A new look at nonnegativity on closed sets and polynomial optimization

    Full text link
    We first show that a continuous function f is nonnegative on a closed set KRnK\subseteq R^n if and only if (countably many) moment matrices of some signed measure dν=fdμd\nu =fd\mu with support equal to K, are all positive semidefinite (if KK is compact μ\mu is an arbitrary finite Borel measure with support equal to K. In particular, we obtain a convergent explicit hierarchy of semidefinite (outer) approximations with {\it no} lifting, of the cone of nonnegative polynomials of degree at most dd. Wen used in polynomial optimization on certain simple closed sets \K (like e.g., the whole space Rn\R^n, the positive orthant, a box, a simplex, or the vertices of the hypercube), it provides a nonincreasing sequence of upper bounds which converges to the global minimum by solving a hierarchy of semidefinite programs with only one variable. This convergent sequence of upper bounds complements the convergent sequence of lower bounds obtained by solving a hierarchy of semidefinite relaxations

    Linear convergence of accelerated conditional gradient algorithms in spaces of measures

    Full text link
    A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear O(1/k)\mathcal{O}(1/k) rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear O(ζk)\mathcal{O}(\zeta^k) convergence rate is obtained locally.Comment: 30 pages, 7 figure
    corecore