726 research outputs found

    Fuzzy logic control of telerobot manipulators

    Get PDF
    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems

    Summary report: A preliminary investigation into the use of fuzzy logic for the control of redundant manipulators

    Get PDF
    The Rice University Department of Mechanical Engineering and Materials Sciences' Robotics Group designed and built an eight degree of freedom redundant manipulator. Fuzzy logic was proposed as a control scheme for tasks not directly controlled by a human operator. In preliminary work, fuzzy logic control was implemented for a camera tracking system and a six degree of freedom manipulator. Both preliminary systems use real time vision data as input to fuzzy controllers. Related projects include integration of tactile sensing and fuzzy control of a redundant snake-like arm that is under construction

    Inverse Kinematics Based on Fuzzy Logic and Neural Networks for the WAM-Titan II Teleoperation System

    Get PDF
    The inverse kinematic problem is crucial for robotics. In this paper, a solution algorithm is presented using artificial intelligence to improve the pseudo-inverse Jacobian calculation for the 7-DOF Whole Arm Manipulator (WAM) and 6-DOF Titan II teleoperation system. An investigation of the inverse kinematics based on fuzzy logic and artificial neural networks for the teleoperation system was undertaken. Various methods such as Adaptive Neural-Fuzzy Inference System (ANFIS), Genetic Algorithms (GA), Multilayer Perceptrons (MLP) Feedforward Networks, Radial Basis Function Networks (RBF) and Generalized Regression Neural Networks (GRNN) were tested and simulated using MATLAB. Each method for identification of the pseudo-inverse problem was tested, and the best method was selected from the simulation results and the error analysis. From the results, the Multilayer Perceptrons with Levenberg-Marquardt (MLP-LM) method had the smallest error and the fastest computation among the other methods. For the WAM-Titan II teleoperation system, the new inverse kinematics calculations for the Titan II were simulated and analyzed using MATLAB. Finally, extensive C code for the alternative algorithm was developed, and the inverse kinematics based on the artificial neural network with LM method is implemented in the real system. The maximum error of Cartesian position was 1.3 inches, and from several trajectories, 75 % of time implementation was achieved compared to the conventional method. Because fast performance of a real time system in the teleoperation is vital, these results show that the new inverse kinematics method based on the MLP-LM is very successful with the acceptable error

    A heuristic approach for path planning for redundant robots

    Full text link
    A new method to solve the trajectory generation for a redundant manipulator is proposed. It avoids traditional computationally intensive methods by relying on the human experience; The proposed method uses a fuzzy logic controller to generate the magnitude of the angles needed to move the end effector to the next target point. The inputs to the controller are the desired displacement of the end effector and the elements of the jacobian matrix that correspond to the considered joint, while the output is the angle magnitude of the joint needed to reach the target point; An algorithm is used to determine the sign of the output from the fuzzy logic controller. Inverse kinematics is used to bring the end-effector to the target point; Several fuzzy logic controllers combined with heuristic algorithms are used to avoid the obstacles in the workspace and to avoid self collision of the links

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    Adaptive Evolving Strategy for Dextrous Robotic Manipulation

    Get PDF
    A robot task can be represented as a set of trajectories conformed by a sequence of poses. In this way it is possible to teach a mobile robot to accomplish a manipulation task, and also to reproduce it. Nevertheless robot navigation may normally introduce inaccuracies in localization due to natural events as wheel-slides, causing a mismatch between the end-effector and the objects or tools the robot is supposed to interact with. We propose an algorithm for adapting manipulation trajectories for different locations. The adaptation is achieved by optimizing in position, orientation and energy consumption. The approach is built over the basis of Evolution Strategies, and only uses forward kinematics permitting to avoid all the inconveniences that inverse kinematics imply, as well as convergence problems in singular kinematic configurations. Manipulation paths generated with this algorithm can achieve optimal performance, sometimes even improving original path smoothness. Experimental results are presented to verify the algorithm.The research leading to these results has received funding from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.Publicad

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    A new geometrical approach to solve inverse kinematics of hyper redundant robots with variable link length

    Get PDF
    In this paper a new approach that generates a general algorithm for n-link hyper-redundant robot is presented. This method uses repetitively the basic inverse kinematics solution of a 2- link robot on some virtual links,where the virtual links are defined following some geometric proposition. Thus, it eliminates the mathematical complexity in computing inverse kinematics solution of n-link hyper redundant robot. Further, this approach can handle planar manipulator with variable links eliminating singularity. Numerical simulations for planar hyper redundant models are presented in order to illustrate the competency of the model

    Solution And Visualization 3D Plane Inverse Kinematics Method

    Get PDF
    The hyper-redundant type of robot is a type of robot that in carrying out its duties in the field of kinematics its degrees of freedom exceed the required minimum degrees. The advantage will be increased capability in operation and performance, if the degrees of freedom are excessive, even in unorganized and complex systems and environments. Algebraic approach method in inverse kinematics algorithm analysis can use; analytic algebra, jacobian basis, analytic KI, exponential multiplication, grobner, and conformal geometry. Iterative approach method in inverse kinematics algorithm analysis can use; genetic algorithm, fuzzy logic, ANFIS, and evolutionary algorithm. The geometric approach method in the inverse kinematics algorithm analysis can use; capital method. The purpose of this study is to analyze a virtual 2 arm robot, which will use axis manipulation in three dimensions using an inverse kinematics solution, using a geometric approach. How to step along on the z axis by rotating and using the reverse kinematics solution to the desired location. The visualization results will be repeated so as to ensure the effectiveness of the algorithm. As for this algorithm will provide a single solution, and this algorithm will prevent and reduce singularities if the link is lower
    corecore