25 research outputs found

    Bayesian Dictionary Learning for Single and Coupled Feature Spaces

    Get PDF
    Over-complete bases offer the flexibility to represent much wider range of signals with more elementary basis atoms than signal dimension. The use of over-complete dictionaries for sparse representation has been a new trend recently and has increasingly become recognized as providing high performance for applications such as denoise, image super-resolution, inpaiting, compression, blind source separation and linear unmixing. This dissertation studies the dictionary learning for single or coupled feature spaces and its application in image restoration tasks. A Bayesian strategy using a beta process prior is applied to solve both problems. Firstly, we illustrate how to generalize the existing beta process dictionary learning method (BP) to learn dictionary for single feature space. The advantage of this approach is that the number of dictionary atoms and their relative importance may be inferred non-parametrically. Next, we propose a new beta process joint dictionary learning method (BP-JDL) for coupled feature spaces, where the learned dictionaries also reflect the relationship between the two spaces. Compared to previous couple feature spaces dictionary learning algorithms, our algorithm not only provides dictionaries that customized to each feature space, but also adds more consistent and accurate mapping between the two feature spaces. This is due to the unique property of the beta process model that the sparse representation can be decomposed to values and dictionary atom indicators. The proposed algorithm is able to learn sparse representations that correspond to the same dictionary atoms with the same sparsity but different values in coupled feature spaces, thus bringing consistent and accurate mapping between coupled feature spaces. Two applications, single image super-resolution and inverse halftoning, are chosen to evaluate the performance of the proposed Bayesian approach. In both cases, the Bayesian approach, either for single feature space or coupled feature spaces, outperforms state-of-the-art methods in comparative domains

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Consistency of Probability Measure Quantization by Means of Power Repulsion–Attraction Potentials

    Get PDF
    This paper is concerned with the study of the consistency of a variational method for probability measure quantization, deterministically realized by means of a minimizing principle, balancing power repulsion and attraction potentials. The proof of consistency is based on the construction of a target energy functional whose unique minimizer is actually the given probability measure ωω to be quantized. Then we show that the discrete functionals, defining the discrete quantizers as their minimizers, actually Γ-converge to the target energy with respect to the narrow topology on the space of probability measures. A key ingredient is the reformulation of the target functional by means of a Fourier representation, which extends the characterization of conditionally positive semi-definite functions from points in generic position to probability measures. As a byproduct of the Fourier representation, we also obtain compactness of sublevels of the target energy in terms of uniform moment bounds, which already found applications in the asymptotic analysis of corresponding gradient flows. To model situations where the given probability is affected by noise, we further consider a modified energy, with the addition of a regularizing total variation term and we investigate again its point mass approximations in terms of Γ-convergence. We show that such a discrete measure representation of the total variation can be interpreted as an additional nonlinear potential, repulsive at a short range, attractive at a medium range, and at a long range not having effect, promoting a uniform distribution of the point masses.Austrian Science Fund (START project

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio
    corecore