842 research outputs found

    HMM-based speech synthesiser using the LF-model of the glottal source

    Get PDF
    A major factor which causes a deterioration in speech quality in HMM-based speech synthesis is the use of a simple delta pulse signal to generate the excitation of voiced speech. This paper sets out a new approach to using an acoustic glottal source model in HMM-based synthesisers instead of the traditional pulse signal. The goal is to improve speech quality and to better model and transform voice characteristics. We have found the new method decreases buzziness and also improves prosodic modelling. A perceptual evaluation has supported this finding by showing a 55.6 % preference for the new system, as against the baseline. This improvement, while not being as significant as we had initially expected, does encourage us to work on developing the proposed speech synthesiser further

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    Glottal Spectral Separation for Speech Synthesis

    Get PDF

    HMM-Based Speech Synthesis Utilizing Glottal Inverse Filtering

    Get PDF

    Reducing mismatch in training of DNN-based glottal excitation models in a statistical parametric text-to-speech system

    Get PDF
    Neural network-based models that generate glottal excitation waveforms from acoustic features have been found to give improved quality in statistical parametric speech synthesis. Until now, however, these models have been trained separately from the acoustic model. This creates mismatch between training and synthesis, as the synthesized acoustic features used for the excitation model input differ from the original inputs, with which the model was trained on. Furthermore, due to the errors in predicting the vocal tract filter, the original excitation waveforms do not provide perfect reconstruction of the speech waveform even if predicted without error. To address these issues and to make the excitation model more robust against errors in acoustic modeling, this paper proposes two modifications to the excitation model training scheme. First, the excitation model is trained in a connected manner, with inputs generated by the acoustic model. Second, the target glottal waveforms are re-estimated by performing glottal inverse filtering with the predicted vocal tract filters. The results show that both of these modifications improve performance measured in MSE and MFCC distortion, and slightly improve the subjective quality of the synthetic speech.Peer reviewe

    New Method for Delexicalization and its Application to Prosodic Tagging for Text-to-Speech Synthesis

    Get PDF
    This paper describes a new flexible delexicalization method based on glottal excited parametric speech synthesis scheme. The system utilizes inverse filtered glottal flow and all-pole modelling of the vocal tract. The method provides a possibil- ity to retain and manipulate all relevant prosodic features of any kind of speech. Most importantly, the features include voice quality, which has not been properly modeled in earlier delex- icalization methods. The functionality of the new method was tested in a prosodic tagging experiment aimed at providing word prominence data for a text-to-speech synthesis system. The ex- periment confirmed the usefulness of the method and further corroborated earlier evidence that linguistic factors influence the perception of prosodic prominence.Peer reviewe
    corecore