42 research outputs found

    A complete analytical solution for the inverse instantaneous kinematics of a spherical-revolute-spherical (7R) redundant manipulator

    Get PDF
    Using a method based upon resolving joint velocities using reciprocal screw quantities, compact analytical expressions are generated for the inverse solution of the joint rates of a seven revolute (spherical-revolute-spherical) manipulator. The method uses a sequential decomposition of screw coordinates to identify reciprocal screw quantities used in the resolution of a particular joint rate solution, and also to identify a Jacobian null-space basis used for the direct solution of optimal joint rates. The results of the screw decomposition are used to study special configurations of the manipulator, generating expressions for the inverse velocity solution for all non-singular configurations of the manipulator, and identifying singular configurations and their characteristics. Two functions are therefore served: a new general method for the solution of the inverse velocity problem is presented; and complete analytical expressions are derived for the resolution of the joint rates of a seven degree of freedom manipulator useful for telerobotic and industrial robotic application

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Intuitive Instruction of Industrial Robots : A Knowledge-Based Approach

    Get PDF
    With more advanced manufacturing technologies, small and medium sized enterprises can compete with low-wage labor by providing customized and high quality products. For small production series, robotic systems can provide a cost-effective solution. However, for robots to be able to perform on par with human workers in manufacturing industries, they must become flexible and autonomous in their task execution and swift and easy to instruct. This will enable small businesses with short production series or highly customized products to use robot coworkers without consulting expert robot programmers. The objective of this thesis is to explore programming solutions that can reduce the programming effort of sensor-controlled robot tasks. The robot motions are expressed using constraints, and multiple of simple constrained motions can be combined into a robot skill. The skill can be stored in a knowledge base together with a semantic description, which enables reuse and reasoning. The main contributions of the thesis are 1) development of ontologies for knowledge about robot devices and skills, 2) a user interface that provides simple programming of dual-arm skills for non-experts and experts, 3) a programming interface for task descriptions in unstructured natural language in a user-specified vocabulary and 4) an implementation where low-level code is generated from the high-level descriptions. The resulting system greatly reduces the number of parameters exposed to the user, is simple to use for non-experts and reduces the programming time for experts by 80%. The representation is described on a semantic level, which means that the same skill can be used on different robot platforms. The research is presented in seven papers, the first describing the knowledge representation and the second the knowledge-based architecture that enables skill sharing between robots. The third paper presents the translation from high-level instructions to low-level code for force-controlled motions. The two following papers evaluate the simplified programming prototype for non-expert and expert users. The last two present how program statements are extracted from unstructured natural language descriptions

    Basic set of behaviours for programming assembly robots

    Get PDF
    We know from the well established Church-Turing thesis that any computer program­ming language needs just a limited set of commands in order to perform any computable process. However, programming in these terms is so very inconvenient that a larger set of machine codes need to be introduced and on top of these higher programming languages are erected.In Assembly Robotics we could theoretically formulate any assembly task, in terms of moves. Nevertheless, it is as tedious and error prone to program assemblies at this low level as it would be to program a computer by using just Turing Machine commands.An interesting survey carried out in the beginning of the nineties showed that the most common assembly operations in manufacturing industry cluster in just seven classes. Since the research conducted in this thesis is developed within the behaviour-based assembly paradigm which views every assembly task as the external manifestation of the execution of a behavioural module, we wonder whether there exists a limited and ergonomical set of elementary modules with which to program at least 80% of the most common operations.IIn order to investigate such a problem, we set a project in which, taking into account the statistics of the aforementioned survey, we analyze the experimental behavioural decomposition of three significant assembly tasks (two similar benchmarks, the STRASS assembly, and a family of torches). From these three we establish a basic set of such modules.The three test assemblies with which we ran the experiments can not possibly exhaust ah the manufacturing assembly tasks occurring in industry, nor can the results gathered or the speculations made represent a theoretical proof of the existence of the basic set. They simply show that it is possible to formulate different assembly tasks in terms of a small set of about 10 modules, which may be regarded as an embryo of a basic set of elementary modules.Comparing this set with Kondoleon’s tasks and with Balch’s general-purpose robot routines, we observed that ours was general enough to represent 80% of the most com­mon manufacturing assembly tasks and ergonomical enough to be easily used by human operators or automatic planners. A final discussion shows that it would be possible to base an assembly programming language on this kind of set of basic behavioural modules

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Combining Vision Verification with a High Level Robot Programming Language

    Get PDF
    This thesis describes work on using vision verification within an object level language for describing robot assembly (RAPT). The motivation for this thesis is provided by two problems. The first is how to enhance a high level robot programming language so that it can encompass vision commands to locate workpieces of an assembly. The second is how to find a way of making full use of sensory information to update the robot system's knowledge about the environment. The work described in this thesis consists of three parts: (1) adding vision commands into the RAPT input language so that the user can specify vision verification tasks; (2) implementing a symbolic geometrical reasoning system so that vision data can be reasoned about symbolically at compile time in order to speed up run time operations; (3) providing a framework which enables the RAPT system to make full use of the sensory information. The vision commands allow partial information about positions to be combined with sensory information in a general way, and the symbolic reasoning system allows much of the reasoning work about vision information to be done before the actual information is obtained. The framework combines a verification vision facility with an object level language in an intelligent way so that all ramifications of the effects of sensory data are taken account of. The heart of the framework is the modifying factor array. The position of each object is expressed as the product of two parts: the planned position and the difference between this and "he actual one. This difference, referred to as the modifying factor of an object, is stored in the modifying factor array. The planned position is described by the user in the usual way in a RAPT program and its value is inferred by the RAPT reasoning system. Modifying factors of objects whose positions are directly verified are defined at compile time as symbolic expressions containing variables whose value will become known at run time. The modifying factors of other objects (not directly verified) may be dependent upon positions of objects which are verified. At compile time the framework reasons about the influence of the sensory information on the objects which are not verified directly by the vision system, and establishes connections among modifying factors of objects in each situation. This framework makes the representation of the influence of vision information on the robot's knowledge of the environment compact and simple. All the programming has been done. It has been tested with simulated data and works successfully

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations
    corecore