4,341 research outputs found

    Inverse Stability Problem and Applications to Renewables Integration

    Get PDF
    In modern power systems, the operating point, at which the demand and supply are balanced, may take different values due to changes in loads and renewable generation levels. Understanding the dynamics of stressed power systems with a range of operating points would be essential to assuring their reliable operation, and possibly allow higher integration of renewable resources. This letter introduces a non-traditional way to think about the stability assessment problem of power systems. Instead of estimating the set of initial states leading to a given operating condition, we characterize the set of operating conditions that a power grid converges to from a given initial state under changes in power injections and lines. We term this problem as "inverse stability," a problem which is rarely addressed in the control and systems literature, and hence, poorly understood. Exploiting quadratic approximations of the system's energy function, we introduce an estimate of the inverse stability region. Also, we briefly describe three important applications of the inverse stability notion: 1) robust stability assessment of power systems with respect to different renewable generation levels; 2) stability-constrained optimal power flow; and 3) stability-guaranteed corrective action design. ©2017 IEEE.MIT/Skoltech, Ministry of Education and Science of Russian Federation (Grant no.14.615.21.0001.)NSF (1508666)NSF (1550015

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Mitigation Strategies and Costs of Climate Protection: The effects of ETC in the hybrid Model MIND

    Get PDF
    MIND is a hybrid model incorporating several energy related sectors in an endogenous growth model of the world economy. This model structure allows a better understanding of the linkages between the energy sectors and the macro-economic environment. We perform a sensitivity analysis and parameter studies to improve the understanding of the economic mechanisms underlying opportunity costs and the optimal mix of mitigation options. Parameters representing technological change that permeates the entire economy have a strong impact on both the opportunity costs of climate protection and on the optimal mitigation strategies, e.g. parameters in the macro-economic environment and in the extraction sector. Sector-specific energy technology parameters change the portfolio of mitigation options but have only modest effects on opportunity costs, e.g. learning rate of the renewable energy technologies. We conclude that feedback loops between the macro-economy and the energy sectors are crucial for the determination of opportunity costs and mitigation strategies.Endogenous technological change, Climate change mitigation costs, Integrated assessment, Growth model, Energy sector, Integrated assessment
    corecore