169 research outputs found

    What Is Around The Camera?

    Get PDF
    How much does a single image reveal about the environment it was taken in? In this paper, we investigate how much of that information can be retrieved from a foreground object, combined with the background (i.e. the visible part of the environment). Assuming it is not perfectly diffuse, the foreground object acts as a complexly shaped and far-from-perfect mirror. An additional challenge is that its appearance confounds the light coming from the environment with the unknown materials it is made of. We propose a learning-based approach to predict the environment from multiple reflectance maps that are computed from approximate surface normals. The proposed method allows us to jointly model the statistics of environments and material properties. We train our system from synthesized training data, but demonstrate its applicability to real-world data. Interestingly, our analysis shows that the information obtained from objects made out of multiple materials often is complementary and leads to better performance.Comment: Accepted to ICCV. Project: http://homes.esat.kuleuven.be/~sgeorgou/multinatillum

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination

    Full text link
    We address the problem of recovering the shape and spatially-varying reflectance of an object from multi-view images (and their camera poses) of an object illuminated by one unknown lighting condition. This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties. The key to our approach, which we call Neural Radiance Factorization (NeRFactor), is to distill the volumetric geometry of a Neural Radiance Field (NeRF) [Mildenhall et al. 2020] representation of the object into a surface representation and then jointly refine the geometry while solving for the spatially-varying reflectance and environment lighting. Specifically, NeRFactor recovers 3D neural fields of surface normals, light visibility, albedo, and Bidirectional Reflectance Distribution Functions (BRDFs) without any supervision, using only a re-rendering loss, simple smoothness priors, and a data-driven BRDF prior learned from real-world BRDF measurements. By explicitly modeling light visibility, NeRFactor is able to separate shadows from albedo and synthesize realistic soft or hard shadows under arbitrary lighting conditions. NeRFactor is able to recover convincing 3D models for free-viewpoint relighting in this challenging and underconstrained capture setup for both synthetic and real scenes. Qualitative and quantitative experiments show that NeRFactor outperforms classic and deep learning-based state of the art across various tasks. Our videos, code, and data are available at people.csail.mit.edu/xiuming/projects/nerfactor/.Comment: Camera-ready version for SIGGRAPH Asia 2021. Project Page: https://people.csail.mit.edu/xiuming/projects/nerfactor

    Programmable Image-Based Light Capture for Previsualization

    Get PDF
    Previsualization is a class of techniques for creating approximate previews of a movie sequence in order to visualize a scene prior to shooting it on the set. Often these techniques are used to convey the artistic direction of the story in terms of cinematic elements, such as camera movement, angle, lighting, dialogue, and character motion. Essentially, a movie director uses previsualization (previs) to convey movie visuals as he sees them in his minds-eye . Traditional methods for previs include hand-drawn sketches, Storyboards, scaled models, and photographs, which are created by artists to convey how a scene or character might look or move. A recent trend has been to use 3D graphics applications such as video game engines to perform previs, which is called 3D previs. This type of previs is generally used prior to shooting a scene in order to choreograph camera or character movements. To visualize a scene while being recorded on-set, directors and cinematographers use a technique called On-set previs, which provides a real-time view with little to no processing. Other types of previs, such as Technical previs, emphasize accurately capturing scene properties but lack any interactive manipulation and are usually employed by visual effects crews and not for cinematographers or directors. This dissertation\u27s focus is on creating a new method for interactive visualization that will automatically capture the on-set lighting and provide interactive manipulation of cinematic elements to facilitate the movie maker\u27s artistic expression, validate cinematic choices, and provide guidance to production crews. Our method will overcome the drawbacks of the all previous previs methods by combining photorealistic rendering with accurately captured scene details, which is interactively displayed on a mobile capture and rendering platform. This dissertation describes a new hardware and software previs framework that enables interactive visualization of on-set post-production elements. A three-tiered framework, which is the main contribution of this dissertation is; 1) a novel programmable camera architecture that provides programmability to low-level features and a visual programming interface, 2) new algorithms that analyzes and decomposes the scene photometrically, and 3) a previs interface that leverages the previous to perform interactive rendering and manipulation of the photometric and computer generated elements. For this dissertation we implemented a programmable camera with a novel visual programming interface. We developed the photometric theory and implementation of our novel relighting technique called Symmetric lighting, which can be used to relight a scene with multiple illuminants with respect to color, intensity and location on our programmable camera. We analyzed the performance of Symmetric lighting on synthetic and real scenes to evaluate the benefits and limitations with respect to the reflectance composition of the scene and the number and color of lights within the scene. We found that, since our method is based on a Lambertian reflectance assumption, our method works well under this assumption but that scenes with high amounts of specular reflections can have higher errors in terms of relighting accuracy and additional steps are required to mitigate this limitation. Also, scenes which contain lights whose colors are a too similar can lead to degenerate cases in terms of relighting. Despite these limitations, an important contribution of our work is that Symmetric lighting can also be leveraged as a solution for performing multi-illuminant white balancing and light color estimation within a scene with multiple illuminants without limits on the color range or number of lights. We compared our method to other white balance methods and show that our method is superior when at least one of the light colors is known a priori

    ShadowNeuS: Neural SDF Reconstruction by Shadow Ray Supervision

    Full text link
    By supervising camera rays between a scene and multi-view image planes, NeRF reconstructs a neural scene representation for the task of novel view synthesis. On the other hand, shadow rays between the light source and the scene have yet to be considered. Therefore, we propose a novel shadow ray supervision scheme that optimizes both the samples along the ray and the ray location. By supervising shadow rays, we successfully reconstruct a neural SDF of the scene from single-view pure shadow or RGB images under multiple lighting conditions. Given single-view binary shadows, we train a neural network to reconstruct a complete scene not limited by the camera's line of sight. By further modeling the correlation between the image colors and the shadow rays, our technique can also be effectively extended to RGB inputs. We compare our method with previous works on challenging tasks of shape reconstruction from single-view binary shadow or RGB images and observe significant improvements. The code and data will be released.Comment: Project page: https://gerwang.github.io/shadowneus

    Physically-Based Editing of Indoor Scene Lighting from a Single Image

    Full text link
    We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks. This is an extremely challenging problem that requires modeling complex light transport, and disentangling HDR lighting from material and geometry with only a partial LDR observation of the scene. We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions. We use physically-based indoor light representations that allow for intuitive editing, and infer both visible and invisible light sources. Our neural rendering framework combines physically-based direct illumination and shadow rendering with deep networks to approximate global illumination. It can capture challenging lighting effects, such as soft shadows, directional lighting, specular materials, and interreflections. Previous single image inverse rendering methods usually entangle scene lighting and geometry and only support applications like object insertion. Instead, by combining parametric 3D lighting estimation with neural scene rendering, we demonstrate the first automatic method to achieve full scene relighting, including light source insertion, removal, and replacement, from a single image. All source code and data will be publicly released

    Inverse Rendering of Lambertian Surfaces Using Subspace Methods

    Full text link
    • …
    corecore