21,708 research outputs found

    Probabilistic inverse reinforcement learning in unknown environments

    Full text link
    We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to solve. To do so, we extend previous probabilistic approaches for inverse reinforcement learning in known MDPs to the case of unknown dynamics or opponents. We do this by deriving two simplified probabilistic models of the demonstrator's policy and utility. For tractability, we use maximum a posteriori estimation rather than full Bayesian inference. Under a flat prior, this results in a convex optimisation problem. We find that the resulting algorithms are highly competitive against a variety of other methods for inverse reinforcement learning that do have knowledge of the dynamics.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Do optimization methods in deep learning applications matter?

    Get PDF
    With advances in deep learning, exponential data growth and increasing model complexity, developing efficient optimization methods are attracting much research attention. Several implementations favor the use of Conjugate Gradient (CG) and Stochastic Gradient Descent (SGD) as being practical and elegant solutions to achieve quick convergence, however, these optimization processes also present many limitations in learning across deep learning applications. Recent research is exploring higher-order optimization functions as better approaches, but these present very complex computational challenges for practical use. Comparing first and higher-order optimization functions, in this paper, our experiments reveal that Levemberg-Marquardt (LM) significantly supersedes optimal convergence but suffers from very large processing time increasing the training complexity of both, classification and reinforcement learning problems. Our experiments compare off-the-shelf optimization functions(CG, SGD, LM and L-BFGS) in standard CIFAR, MNIST, CartPole and FlappyBird experiments.The paper presents arguments on which optimization functions to use and further, which functions would benefit from parallelization efforts to improve pretraining time and learning rate convergence

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar
    • …
    corecore