937 research outputs found

    On Correcting Inputs: Inverse Optimization for Online Structured Prediction

    Get PDF
    Algorithm designers typically assume that the input data is correct, and then proceed to find "optimal" or "sub-optimal" solutions using this input data. However this assumption of correct data does not always hold in practice, especially in the context of online learning systems where the objective is to learn appropriate feature weights given some training samples. Such scenarios necessitate the study of inverse optimization problems where one is given an input instance as well as a desired output and the task is to adjust the input data so that the given output is indeed optimal. Motivated by learning structured prediction models, in this paper we consider inverse optimization with a margin, i.e., we require the given output to be better than all other feasible outputs by a desired margin. We consider such inverse optimization problems for maximum weight matroid basis, matroid intersection, perfect matchings, minimum cost maximum flows, and shortest paths and derive the first known results for such problems with a non-zero margin. The effectiveness of these algorithmic approaches to online learning for structured prediction is also discussed.Comment: Conference version to appear in FSTTCS, 201

    On Fuzzy Matroids

    Get PDF
    The aim of this paper is to discuss properties of fuzzy regular-flats, fuzzy C- flats, fuzzy alternative-sets and fuzzy i-flats. Moreover, we characterize some peculiar fuzzy matroids via these notions. Finally, we provide a decomposition of fuzzy strong maps

    Pure O-sequences and matroid h-vectors

    Full text link
    We study Stanley's long-standing conjecture that the h-vectors of matroid simplicial complexes are pure O-sequences. Our method consists of a new and more abstract approach, which shifts the focus from working on constructing suitable artinian level monomial ideals, as often done in the past, to the study of properties of pure O-sequences. We propose a conjecture on pure O-sequences and settle it in small socle degrees. This allows us to prove Stanley's conjecture for all matroids of rank 3. At the end of the paper, using our method, we discuss a first possible approach to Stanley's conjecture in full generality. Our technical work on pure O-sequences also uses very recent results of the third author and collaborators.Comment: Contains several changes/updates with respect to the previous version. In particular, a discussion of a possible approach to the general case is included at the end. 13 pages. To appear in the Annals of Combinatoric

    On the shape of a pure O-sequence

    Full text link
    An order ideal is a finite poset X of (monic) monomials such that, whenever M is in X and N divides M, then N is in X. If all, say t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h=(1,h_1,...,h_e), counting the monomials of X in each degree. Equivalently, in the language of commutative algebra, pure O-sequences are the h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of Richard Stanley's early works in this area, and have since played a significant role in at least three disciplines: the study of simplicial complexes and their f-vectors, level algebras, and matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences. Our work, making an extensive use of algebraic and combinatorial techniques, includes: (i) A characterization of the first half of a pure O-sequence, which gives the exact converse to an algebraic g-theorem of Hausel; (ii) A study of (the failing of) the unimodality property; (iii) The problem of enumerating pure O-sequences, including a proof that almost all O-sequences are pure, and the asymptotic enumeration of socle degree 3 pure O-sequences of type t; (iv) The Interval Conjecture for Pure O-sequences (ICP), which represents perhaps the strongest possible structural result short of an (impossible?) characterization; (v) A pithy connection of the ICP with Stanley's matroid h-vector conjecture; (vi) A specific study of pure O-sequences of type 2, including a proof of the Weak Lefschetz Property in codimension 3 in characteristic zero. As a corollary, pure O-sequences of codimension 3 and type 2 are unimodal (over any field); (vii) An analysis of the extent to which the Weak and Strong Lefschetz Properties can fail for monomial algebras; (viii) Some observations about pure f-vectors, an important special case of pure O-sequences.Comment: iii + 77 pages monograph, to appear as an AMS Memoir. Several, mostly minor revisions with respect to last year's versio

    Lifting matroid divisors on tropical curves

    Get PDF
    Tropical geometry gives a bound on the ranks of divisors on curves in terms of the combinatorics of the dual graph of a degeneration. We show that for a family of examples, curves realizing this bound might only exist over certain characteristics or over certain fields of definition. Our examples also apply to the theory of metrized complexes and weighted graphs. These examples arise by relating the lifting problem to matroid realizability. We also give a proof of Mn\"ev universality with explicit bounds on the size of the matroid, which may be of independent interest.Comment: 27 pages, 7 figures, final submitted version: several proofs clarified and various minor change
    • …
    corecore