503,812 research outputs found

    Bayes-optimal inverse halftoning and statistical mechanics of the Q-Ising model

    Get PDF
    On the basis of statistical mechanics of the Q-Ising model, we formulate the Bayesian inference to the problem of inverse halftoning, which is the inverse process of representing gray-scales in images by means of black and white dots. Using Monte Carlo simulations, we investigate statistical properties of the inverse process, especially, we reveal the condition of the Bayes-optimal solution for which the mean-square error takes its minimum. The numerical result is qualitatively confirmed by analysis of the infinite-range model. As demonstrations of our approach, we apply the method to retrieve a grayscale image, such as standard image `Lenna', from the halftoned version. We find that the Bayes-optimal solution gives a fine restored grayscale image which is very close to the original.Comment: 13pages, 12figures, using elsart.cl

    Inverse problem of photoelastic fringe mapping using neural networks

    Get PDF
    This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works
    • ā€¦
    corecore