179 research outputs found

    Characterization and modeling of the purkinje system for biophysical simulations

    Get PDF
    The usability of computer models of the heart depends mostly on their capacity to accurately represent heart anatomy, microstructure and function. However, integrating such a variety of biological data is often not possible. This is the case of the cardiac conduction system (CCS), which is responsible for the fast and coordinated distribution of the electrical impulses. The CCS cannot be observed in-vivo but it is mandatory in several cardiac modeling applications involving arrhythmias. The aims of this thesis are to show the importance of explicitly modeling the CCS structure and function for an accurate description of the electrical activation of the ventricles and to present a novel technique to build automatically a CCS structure that meets physiological observations. Pursuing that goal has required a multidisciplinary effort to build models for cardiac electrophysiology, and imaging techniques to acquire and analyze data of the CCS at different scales.La usabilidad de modelos computacionales cardíacos depende del poder representar con precisión la anatomía del corazón, su microestructura y su función. Sin embargo, la integración de tal variedad de datos biológicos no siempre es posible. Este es el caso del sistema de conducción cardiaco (CCS), que es responsable de la distribución rápida y coordinada de los impulsos eléctricos. El CCS no puede ser observado in vivo pero es imprescindible en los modelos del corazón que involucran las arritmias. Los objetivos de esta tesis son el modelar la estructura y función del CCS para obtener una descripción precisa de la activación eléctrica del corazón y el construir la estructura de un CCS que cumpla con las observaciones fisiológicas. La persecución de este objetivo ha requerido un esfuerzo multidisciplinar para construir modelos de la electrofisiología cardiaca y las técnicas de imagen necesarias para adquirir y analizar datos del CCS a diferentes escalas

    Inverse estimation of the cardiac purkinje system from electroanatomical maps

    Get PDF
    Las enfermedades cardiovasculares son la primera causa de mortalidad en el mundo, con 17.7 millones de muertes cada año, aproximadamente el 31% de las muertes en todo el mundo (Organización Mundial de la Salud (OMS) 2018). Las arritmias ventriculares son una causa importante de muerte súbita, que representa aproximadamente la mitad de la mortalidad cardíaca. Algunas de esas arritmias se atribuyen a la red de Purkinje (PKN), que bajo ciertas condiciones puede generar ritmos focales automáticos, y su configuración de red puede sostener circuitos eléctricos reentrantes. Los ritmos focales originados desde la red de Purkinje pueden servir como puntos de inicio en casos de fibrilación ventricular en un amplio espectro de pacientes. El manejo de las enfermedades eléctricas cardíacas es un área clínica en expansión. Las nuevas tecnologías de imágenes y mapeo no invasivas, permiten adquirir imágenes clínicas de alta resolución (MRI, CT) que se pueden utilizar para localizar y caracterizar el tejido cardíaco patológico. Además, los sistemas de navegación electroanatómica (EAM) pueden ayudar al electrofisiólogo a encontrar las fuentes de actividad o circuitos arritmogénicos que mantienen la arritmia y eliminarlos mediante ablación por radiofrecuencia (RFA). A pesar de todos los avances técnicos, los tratamientos clínicos para esas enfermedades todavía se perciben como subóptimos, con tasas de éxito del tratamiento a largo plazo en el rango de 60 a 65%. Por lo tanto, existe una necesidad imperiosa de mejorar los resultados clínicos en beneficio de los pacientes y el sistema de salud. El área del modelado biofísico computacional ha comenzado a penetrar en entornos clínicos en unos pocos hospitales tecnológicamente avanzados y orientados a la investigación en el mundo. El objetivo principal de estas técnicas es el desarrollo de modelos 3D realistas de diferentes órganos, como el corazón, que incluyen, con un alto grado de detalle, características genéticas de las corrientes iónicas, sus mutaciones, las características electrofisiológicas de los diferentes tipos de células cardíacas, la estructura anatómica de los tejidos cardíacos y, en general, del cuerpo humano. A continuación, los modelos se utilizan para simular la función cardíaca, por ejemplo, electrofisiología, para tratar de estratificar a los pacientes o mejorar la planificación y ejecución de la terapia. Los enfoques por computador aún se enfrentan a varios desafíos que impiden su penetración completa en entornos clínicos. Podría decirse que uno de los obstáculos más importantes es el tiempo y la experiencia necesarios para construir un modelo del corazón personalizado a paciente, incluso si todos los datos clínicos necesarios están disponibles. En ese sentido, uno de los componentes del modelo que se ha mantenido elusivo a los modeladores ha sido la PKN, que es clave para la electrofisiología cardíaca. La razón principal es que debido a sus pequeñas dimensiones no existe una técnica clínica con resolución suficiente para permitir su visualización in vivo. El objetivo principal de esta tesis es desarrollar una metodología capaz de estimar inversamente un PKN reducido de paciente a partir de su EAM. Eso implica, primero encontrar en el EAM las fuentes de activación eléctrica, llamadas uniones de Purkinje-miocardio (PMJ), y seguir la estructura que interconecta esos PMJ y reproduce la secuencia de activación del paciente. En resumen, las principales contribuciones de esta tesis son: - Metodología para estimar los PMJ, o las fuentes de actividad eléctrica, sobre una representación 3D del endocardio ventricular, proporcionada por un EAM. El método desarrollado puede procesar directamente los datos adquiridos por un electrofisiólogo en el Cathlab, volver a anotar los tiempos en las muestras adquiridas y obtener las ubicaciones de los PMJs y los tiempos de activación, considerando explicitamente ruido en las muestras. - Metodología para estimar el PKN del paciente a partir de los PMJ estimados, que es capaz de reproducir la secuencia de activación eléctrica del paciente con un error mínimo. El método ha sido validado tanto en EAM sintéticos como en 28 EAM reales, mostrando errores de unos pocos milisegundos. Además, se ha utilizado un PKN estimado para simular el ECG virtual de un paciente, donse se observa coincidencia entre el ECG real y el simulado. En conclusión, he desarrollado y validado una metodología que permite la estimación de la PKN de un paciente con errores mínimos en la secuencia de activación, y que puede usarse para personalizar simulaciones biofísicas del corazón o ayudar al electrofisiólogo en la planificación de intervenciones de RFA.Cardiovascular disease is the number one cause of mortality in the world, accounting for 17.7 million deaths each year, an estimated 31% of all deaths worldwide (World Health Organization (WHO) 2018). Ventricular arrhythmias are a major cause of sudden death, which accounts for approximately half of cardiac mortality. Some of those arrhythmias are attributed to the Purkinje network (PKN), which under certain conditions can generate both automatic and triggered focal rhythms, and its network configuration can sustain re‑entrant circuits. Focal Purkinje triggers can serve as initial points of ventricular fibrillation in a wide spectrum of patients. The management of cardiac electrical diseases is an expanding clinical activity. New non-invasive imaging and mapping technologies, allow to acquire high resolution clinical images (MRI, CT) that can be used to localize and characterize pathological cardiac tissue. Furthermore, electroanatomical navigating (EAM) systems, can aid electrophysiologist to find the sources of arrhythmogenic activity or circuits maintaining arrhythmia, and eliminate them by radio-frequency ablation (RFA). Despite all the technical advances, overall clinical outcome for those diseases is still perceived as suboptimal, with long-term treatment success rates in the range of 60 to 65%. Therefore, there is a compelling need to improve clinical outcomes for the benefit of the patients and the healthcare system. The area of computational biophysical modeling has already started to penetrate in clinical environments in a few technologically advanced research oriented hospitals in the world. The main objective of these techniques is the development of realistic 3D models of different organs, such as the heart, that include, with a high degree of detail, genetic characteristics of the ionic currents, their mutations, the electrophysiological characteristics of the different cardiac cell types, the anatomical structure of cardiac tissues, and in general of the human body. Following, the models are used to simulate the heart function, e.g., electrophysiology, to try to stratify patients or improve therapy planning and delivery. Computer-based approaches are still facing several challenges that prevent their complete penetration into clinical environments. Arguably, one of the most important obstacles is the time and expertise required to build a patient-specific model of the heart, even if all necessary clinical data are available. In that sense, one of the model components that has remained largely elusive to modelers has been the PKN, which is key for cardiac electrophysiology. The main reason is that due to its small dimensions there is no clinical technique with enough resolution to allow its visualization in vivo. The main purpose of this thesis is to develop a methodology able to inversely estimate a reduced PKN of patient from his EAM. That involves, first, finding in the EAM the sources of electrical activation, so called Purkinje-myocardial junctions (PMJs), and, following, finding the structure that interconnects those PMJs and reproduces the patient sequence of activation. In summary, the main contributions of this thesis are: - Methodology to estimate the PMJs, or the sources of electrical activity, from a 3D representation of the ventricular endocardium provided by an EAM. The method developed can process directly the data acquired by an electrophysiologist in the Cathlab, re-annotate the time samples, and obtain the PMJ locations and activation times, explicitly considering noise in the samples. - Methodology to estimate the patient PKN from the estimated PMJs, that is able to reproduce the patient's sequence of electrical activation with a minimal error. The method has been validated on synthetic EAMs as well as in 28 real EAMs, showing errors of a few milliseconds. In addition, an estimated PKN has been used to simulate the virtual ECG of a patient, showing a good match with the clinical one. In conclusion, I have developed and validated a methodology that permits the estimation of a patient's PKN with small errors in the sequence of activation, that can be used to personalize biophysical simulations of the heart or aid electrophysiologist in the planning of RFA interventions

    Multiscale Modeling of the Ventricles: From Cellular Electrophysiology to Body Surface Electrocardiograms

    Get PDF
    This work is focused on different aspects within the loop of multiscale modeling: On the cellular level, effects of adrenergic regulation and the Long-QT syndrome have been investigated. On the organ level, a model for the excitation conduction system was developed and the role of electrophysiological heterogeneities was analyzed. On the torso level a dynamic model of a deforming heart was created and the effects of tissue conductivities on the solution of the forward problem were evaluated

    Electrophysiology

    Get PDF
    The outstanding evolution of recording techniques paved the way for better understanding of electrophysiological phenomena within the human organs, including the cardiovascular, ophthalmologic and neural systems. In the field of cardiac electrophysiology, the development of more and more sophisticated recording and mapping techniques made it possible to elucidate the mechanism of various cardiac arrhythmias. This has even led to the evolution of techniques to ablate and cure most complex cardiac arrhythmias. Nevertheless, there is still a long way ahead and this book can be considered a valuable addition to the current knowledge in subjects related to bioelectricity from plants to the human heart

    ECG denoising based on adaptive signal processing technique

    Get PDF
    An Electrocardiogram (ECG) monitoring system deals with several challenges related with noise sources. The main goal of this text was the study of Adaptive Signal Processing Algorithms for ECG noise reduction when applied to real signals. This document presents an adaptive ltering technique based on Least Mean Square (LMS) algorithm to remove the artefacts caused by electromyography (EMG) and power line noise into ECG signal. For this experiments it was used real noise signals, mainly to observe the di erence between real noise and simulated noise sources. It was obtained very good results due to the ability of noise removing that can be reached with this technique. A recolha de sinais electrocardiogr a cos (ECG) sofre de diversos problemas relacionados com ru dos. O objectivo deste trabalho foi o estudo de algoritmos adaptativos para processamento digital de sinal, para redu c~ao de ru do em sinais ECG reais. Este texto apresenta uma t ecnica de redu c~ao de ru do baseada no algoritmo Least Mean Square (LMS) para remo c~ao de ru dos causados quer pela actividade muscular (EMG) quer por ru dos causados pela rede de energia el ectrica. Para as experiencias foram utilizados ru dos reais, principalmente para aferir a diferen ca de performance do algoritmo entre os sinais reais e os simulados. Foram conseguidos bons resultados, essencialmente devido as excelentes caracter sticas que esta t ecnica tem para remover ru dos

    Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals

    Get PDF
    This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності. Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination. The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals

    Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction

    Full text link
    [ES] Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente denominada como infarto de miocardio (IM). Tras superar un IM, un considerable número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una reentrada a través de canales de conducción (CC), filamentos de miocardio superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente para interrumpir de manera permanente la propagación eléctrica a través de los CCs responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito relativamente baja. En primer lugar, realizamos una revisión exhaustiva de la literatura referente a los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento de sus principales características y los métodos usados en su construcción, con especial atención sobre los modelos orientados a simulación de EF cardíaca. Luego, usando datos clínicos de un paciente con historial de TV relacionada con infarto, diseñamos e implementamos una serie de estrategias y metodologías para (1) generar modelos computacionales 3D específicos de paciente de ventrículos infartados que puedan usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. Por último, realizamos el estudio retrospectivo por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con el infarto usando diferentes configuraciones de modelado para la ZB. Validamos nuestros resultados mediante la reproducción, con una precisión razonable, del ECG del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación endocárdica obtenidos invasivamente mediante sistemas de mapeado electroanatómico en este último caso. Esto permitió encontrar la ubicación y analizar las características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que nuestro planteamiento está completamente basado en datos clínicos no invasivos adquiridos antes de la intervención real. Estos resultados confirman la viabilidad de la realización de estudios in-silico de EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la metodología propuesta requiere de notables mejoras y validación por medio de es[CA] Les malalties cardiovasculars constitueixen la principal causa de morbiditat i mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de miocardi (IM). Després de superar un IM, un considerable nombre de pacients desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase crònica de l'IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. Aquest tipus concret de TV normalment s'origina per una reentrada a través dels canals de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l'infart fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d'evitar episodis recurrents de TV, l'ablació per radiofreqüència (ARF), un procediment mínimament invasiu realitzat mitjançant cateterisme en el laboratori de electrofisiologia (EF), s'usa habitualment per a interrompre de manera permanent la propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del procediment d'ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies pre-procediment per a millorar la planificació de l'ARF i, d'aquesta manera, augmentar la taxa d'èxit, que es relativament baixa. En primer lloc, realitzem una revisió exhaustiva de la literatura referent als models cardíacs 3D existents, amb la finalitat d'obtindre un profund coneixement de les seues principals característiques i els mètodes usats en la seua construcció, amb especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, usant dades clíniques d'un pacient amb historial de TV relacionada amb infart, dissenyem i implementem una sèrie d'estratègies i metodologies per a (1) generar models computacionals 3D específics de pacient de ventricles infartats capaços de realitzar simulacions de EF cardíaca a nivell d'òrgan, incloent la cicatriu de l'infart i la regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors que permeten l'obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF realitzats en el laboratori de EF abans de l'ablació. La finalitat d'aquestes metodologies és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius d'ablació òptims per al procediment d'ARF. Finalment, a manera de prova de concepte, realitzem l'estudi retrospectiu per simulació d'un cas, en el qual aconseguim induir la TV reentrant relacionada amb l'infart usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així com en ritme sinusal a partir dels mapes d'activació endocardíac obtinguts invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. Això va permetre trobar la ubicació i analitzar les característiques del CC responsable de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat abans del procediment d'ARF, ja que el nostre plantejament està completament basat en dades clíniques no invasius adquirits abans de la intervenció real. Aquests resultats confirmen la viabilitat de la realització d'estudis in-silico de EF personalitzats i pre-procediment d'utilitat, així com el potencial de l'abordatge proposat per a arribar a ser en un futur una eina de suport per a la planificació de l'ARF en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia proposada requereix de notables millores i validació per mitjà d'estudis de simulació amb grans cohorts de pacients.[EN] Cardiovascular diseases represent the main cause of morbidity and mortality worldwide, causing around 18 million deaths every year. Among these diseases, the most common one is the ischaemic heart disease, usually referred to as myocardial infarction (MI). After surviving to a MI, a considerable number of patients develop life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, that is, weeks, months or even years after the initial acute phase. This particular type of VT is typically sustained by reentry through slow conducting channels (CC), which are filaments of surviving myocardium that cross the non-conducting fibrotic infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed by catheterization in the electrophysiology (EP) laboratory, is commonly used to interrupt the electrical conduction through the CCs responsible for the VT permanently. However, besides being invasive, risky and time-consuming, in the cases of VTs related to chronic MI, up to 50% of patients continue suffering from recurrent VT episodes after the RFA procedure. Therefore, there exists a need to develop novel pre-procedural strategies to improve RFA planning and, thereby, increase this relatively low success rate. First, we conducted an exhaustive review of the literature associated with the existing 3D cardiac models in order to gain a deep knowledge about their main features and the methods used for their construction, with special focus on those models oriented to simulation of cardiac EP. Later, using a clinical dataset of a chronically infarcted patient with a history of infarct-related VT, we designed and implemented a number of strategies and methodologies to (1) build patient-specific 3D computational models of infarcted ventricles that can be used to perform simulations of cardiac EP at the organ level, including the infarct scar and the surrounding region known as border zone (BZ); (2) construct 3D torso models that enable to compute the simulated ECG; and (3) carry out pre-procedural personalized in-silico EP studies, trying to replicate the actual EP studies conducted in the EP laboratory prior to the ablation. The goal of these methodologies is to allow locating the CCs into the 3D ventricular model in order to help in defining the optimal ablation targets for the RFA procedure. Lastly, as a proof-of-concept, we performed a retrospective simulation case study, in which we were able to induce an infarct-related reentrant VT using different modelling configurations for the BZ. We validated our results by reproducing with a reasonable accuracy the patient's ECG during VT, as well as in sinus rhythm from the endocardial activation maps invasively recorded via electroanatomical mapping systems in this latter case. This allowed us to find the location and analyse the features of the CC responsible for the clinical VT. Importantly, such in-silico EP study might have been conducted prior to the RFA procedure, since our approach is completely based on non-invasive clinical data acquired before the real intervention. These results confirm the feasibility of performing useful pre-procedural personalized in-silico EP studies, as well as the potential of the proposed approach to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs in the future. Nevertheless, the developed methodology requires further improvements and validation by means of simulation studies including large cohorts of patients.During the carrying out of this doctoral thesis, the author Alejandro Daniel López Pérez was financially supported by the Ministerio de Economía, Industria y Competitividad of Spain through the program Ayudas para contratos predoctorales para la formación de doctores, with the grant number BES-2013-064089.López Pérez, AD. (2019). Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124973TESI

    Computer assisted optimization of cardiac resynchronization therapy

    Get PDF
    The efficacy of cardiac resynchronization therapy (CRT) through biventricular pacing (BVP) has been demonstrated by numerous studies in patients suffering from congestive heart failure. In order to achieve a guideline for optimal treatment with BVP devices, an automated non-invasive strategy based on an electrophysiological computer model of the heart is presented. The presented research investigates an off-line optimization algorithm based on different electrode positioning and timing delays

    Personalized Electromechanical Modeling of the Human Heart : Challenges and Opportunities for the Simulation of Pathophysiological Scenarios

    Get PDF
    Mathematische Modelle des menschlichen Herzens entwickeln sich zu einem Eckpfeiler der personalisierten Medizin. Sie sind ein nützliches Instrument und helfen klinischen Entscheidungsträgern die zugrundeliegenden Mechanismen von Herzkrankheiten zu erforschen und zu verstehen. Aufgrund der Komplexität des Herzens benötigen derartige Modelle allerdings eine detaillierte Beschreibung der physikalischen Prozesse, welche auf verschiedenen räumlichen und zeitlichen Skalen miteinander interagieren. Aus mathematischer Perspektive stellen vor allem die Entwicklung robuster numerischer Methoden für die Lösung des Modells in Raum und Zeit sowie die Identifizierung von Parametern aus patientenspezifischen Messungen eine Herausforderung dar. In dieser Arbeit wird ein detailliertes mathematisches Modell vorgestellt, welches ein vollgekoppeltes Multiskalenmodell des menschlichen Herzens beschreibt. Das Modell beinhaltet unter anderem die Ausbreitung des elektrischen Signals und die mechanische Verformung des Herzmuskels sowie eine Beschreibung des Herz-Kreislauf-Systems. Basierend auf dem neusten Stand der Technik wurden Modelle der Membrankinetik sowie der Entwicklung der aktiven Kraft zu einem einheitlichen Modell einer Herzmuskelzelle zusammengeführt. Dieses beschreibt die elektromechanische Kopplung in Herzmuskelzellen der Vorhöfe und der Herzkammern basierend auf der Physiologie im Menschen und wurde mit Hilfe von experimentellen Daten aus einzelnen Zellen neu parametrisiert. Um das elektromechanisch gekoppelte Modell des menschlichen Herzens lösen zu können, wurde ein gestaffeltes Lösungsverfahren entwickelt, welches auf bereits existierenden Softwarelösungen der Elektrophysiologie und Mechanik aufbaut. Das neue Modell wurde verwendet, um den Einfluss elektromechanischer Rückkopplungseffekte auf das Herz im Sinusrhythmus zu untersuchen. Die Simulationsergebnisse zeigten, dass elektromechanische Rückkopplungseffekte auf zellulärer Ebene einen wesentlichen Einfluss auf das mechanische Verhalten des Herzens haben. Dahingegen hatte die Verformung des Herzens nur einen geringen Einfluss auf den Diffusionskoeffizienten des elektrischen Signals. Um die verschiedenen Komponenten der Simulationssoftware zu verifizieren, wurden spezielle Probleme definiert, welche die wichtigsten Aspekte der Elektrophysiologie und der Mechanik abdecken. Zusätzlich wurden diese Probleme dazu verwendet, den Einfluss von räumlicher und zeitlicher Diskretisierung auf die numerische Lösung zu bewerten. Die Ergebnisse zeigten, dass Raum- und Zeitdiskretisierung vor allem für das elektrophysiologische Problem die limitierenden Faktoren sind, während die Mechanik hauptsächlich anfällig für volumenversteifende Effekte ist. Weiterhin wurde das Modell verwendet, um zu untersuchen, wie sich eine Verteilung der Faserspannung auf den gesamten Herzmuskel auf die Funktion der linken Herzkammer auswirkt. Hierzu wurde zusätzlich eine Spannung in die Normalenrichtungen der Fasern einer idealisierten linken Herzkammer angewandt. Es zeigte sich, dass insbesondere eine Spannung senkrecht zu den Faserschichten zu einer physiologischeren Kontraktion der Kammer führte. Allerdings konnten diese Ergebnisse auf einem ganzen Herzen nicht vollständig bestätigt werden. In einem zweiten Projekt wurde mit Hilfe eines Modells der linken Herzkammer untersucht, wie sich das Rotationsmuster der Kammer unter Modifikation der lokalen elektromechanischen Eigenschaften verändert. Hierzu wurden in vivo Daten elektromechanischer Parameter von 30 Patienten mit Herzversagen und Linksschenkelblock in das Modell integriert, simuliert und ausgewertet. Die Ergebnisse konnten die klinisch aufgestellte Hypothese nicht bestätigen und es zeigte sich keine Korrelation zwischen den elektromechanischen Parametern und dem Rotationsverhalten. Die Auswirkungen von standardisierten Ablationsstrategien zur Behandlung von Vorhofflimmern in Bezug auf die kardiovaskuläre Leistung wurde in einem Modell des ganzen Herzens untersucht. Aufgrund der Narben im linken Vorhof wurde die elektrische Aktivierung und die Steifigkeit des Herzmuskels verändert. Dies führte zu einem reduzierten Auswurfvolumen, welches in direktem Zusammenhang mit dem inaktiven Gewebe steht. Abhängig von der Steifigkeit der Narben hat sich zusätzlich der Druck im linken Vorhof erhöht. Die linke Herzkammer war nur wenig beeinflusst. Zu guter Letzt wurden schrittweise pathologische Mechanismen in das Herzmodell integriert, welche in Zusammenhang mit Herzversagen stehen und in Patienten mit dilatativer Kardiomyopathie zu beobachten sind. Die Simulationen zeigten, dass vor allem zelluläre Veränderungen bezüglich der elektrophysiologischen Eigenschaften für die schlechte mechanische Aktivtät des Herzens verantwortlich sind. Weiterhin zeigte sich, dass strukturelle Veränderungen der Anatomie und die erhöhte Steifigkeit des Herzmuskels und die damit einhergehenden Anpassungen des Herz-Kreislauf-Systems nötig sind, um in vivo Messungen zu reproduzieren. In dieser Arbeit wurde eine Simulationsumgebung vorgestellt, welche die Berechnung der elektromechanischen Aktivität des Herzens und des Herz-Kreislauf-Systems ermöglicht. Die Simulationsumgebung wurde mit Hilfe von einfachen Beispielen verifiziert und unter Einbeziehung von Daten aus der Magnetresonanztomographie validiert. Zu guter Letzt wurde die Simulationsumgebung genutzt, um klinische Fragen zu beantworten, welche andernfalls im Dunkeln blieben

    Simulation of the mechanical behavior of the left ventricle

    Get PDF
    corecore