36 research outputs found

    Stiffness Analysis of Overconstrained Parallel Manipulators

    Get PDF
    The paper presents a new stiffness modeling method for overconstrained parallel manipulators with flexible links and compliant actuating joints. It is based on a multidimensional lumped-parameter model that replaces the link flexibility by localized 6-dof virtual springs that describe both translational/rotational compliance and the coupling between them. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations for the unloaded manipulator configuration, which allows computing the stiffness matrix for the overconstrained architectures, including singular manipulator postures. The advantages of the developed technique are confirmed by application examples, which deal with comparative stiffness analysis of two translational parallel manipulators of 3-PUU and 3-PRPaR architectures. Accuracy of the proposed approach was evaluated for a case study, which focuses on stiffness analysis of Orthoglide parallel manipulator

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Stiffness modeling for perfect and non-perfect parallel manipulators under internal and external loadings

    Get PDF
    International audienceThe paper presents an advanced stiffness modeling technique for perfect and non-perfect parallel manipulators under internal and external loadings. Particular attention is paid to the manipulators composed of non-perfect serial chains, whose geometrical parameters differ from the nominal ones and do not allow to assemble manipulator without internal stresses that considerably affect the stiffness properties and also change the end-effector location. In contrast to other works, several types of loadings are considered simultaneously: an external force applied to the end-effector, internal loadings generated by the assembling of non-perfect serial chains and external loadings applied to the intermediate points (auxiliary loading due to the gravity forces and relevant compensator mechanisms, etc.). For this type of manipulators, a non-linear stiffness modeling technique is proposed that allows to take into account inaccuracy in the chains and to aggregate their stiffness models for the case of both small and large deflections. Advantages of the developed technique and its ability to compute and compensate the compliance errors caused by the considered factors are illustrated by an example that deals with parallel manipulators of the Orthoglide family

    Enhanced stiffness modeling of manipulators with passive joints

    Get PDF
    The paper presents a methodology to enhance the stiffness analysis of serial and parallel manipulators with passive joints. It directly takes into account the loading influence on the manipulator configuration and, consequently, on its Jacobians and Hessians. The main contributions of this paper are the introduction of a non-linear stiffness model for the manipulators with passive joints, a relevant numerical technique for its linearization and computing of the Cartesian stiffness matrix which allows rank-deficiency. Within the developed technique, the manipulator elements are presented as pseudo-rigid bodies separated by multidimensional virtual springs and perfect passive joints. Simulation examples are presented that deal with parallel manipulators of the Ortholide family and demonstrate the ability of the developed methodology to describe non-linear behavior of the manipulator structure such as a sudden change of the elastic instability properties (buckling)

    Modèles élastiques et élasto‐dynamiques de robots porteurs

    Get PDF
    The report presents an advanced stiffness modeling technique for parallel manipulators composed of perfect and non-perfect serial chains. The developed technique contributes both to the stiffness modeling of serial and parallel manipulators under internal and external loadings. Particular attention has been done to enhancement of VJM-based stiffness modeling technique for the case of auxiliary loading (applied to the intermediate points). The obtained results allows us to take into account gravity forces induced by the link weights which are assumed to be applied in the intermediate points. In contrast to other works, the developed technique is able to take into account deviation of the end-platform location because of inaccuracy in the geometry of serial chains, which does not allow to assemble manipulator without internal stresses. The developed aggregation procedure combines the chain stiffness models and produces the relevant force-deflection relation, the aggregated Cartesian stiffness matrix and the reference point displacements caused by inaccuracy in kinematic chains. The developed technique can be applied to both over-constrained and under-constrained manipulators, and is suitable for the cases of both small and large deflections.ANR COROUSS

    Dynamic analysis of astronaut motions during extravehicular activity

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1995.Includes bibliographical references (leaves 122-125).by Grant Schaffner.M.S

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Rough-terrain mobile robot planning and control with application to planetary exploration

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 119-130).Future planetary exploration missions will require mobile robots to perform difficult tasks in highly challenging terrain, with limited human supervision. Current motion planning and control algorithms are not well suited to rough-terrain mobility, since they generally do not consider the physical characteristics of the rover and its environment. Failure to understand these characteristics could lead to rover entrapment and mission failure. In this thesis, methods are presented for improved rough-terrain mobile robot mobility, which exploit fundamental physical models of the rover and terrain. Wheel-terrain interaction has been shown to be critical to rough terrain mobility. A wheel-terrain interaction model is presented, and a method for on-line estimation of important model parameters is proposed. The local terrain profile also strongly influences robot mobility. A method for on-line estimation of wheel-terrain contact angles is presented. Simulation and experimental results show that wheel-terrain model parameters and contact angles can be estimated on-line with good accuracy. Two rough-terrain planning algorithms are introduced. First, a motion planning algorithm is presented that is computationally efficient and considers uncertainty in rover sensing and localization. Next, an algorithm for geometrically reconfiguring the rover kinematic structure to optimize tipover stability margin is presented. Both methods utilize models developed earlier in the thesis.(cont.) Simulation and experimental results on the Jet Propulsion Laboratory Sample Return Rover show that the algorithms allow highly stable, semi-autonomous mobility in rough terrain. Finally, a rough-terrain control algorithm is presented that exploits the actuator redundancy found in multi-wheeled mobile robots to improve ground traction and reduce power consumption. The algorithm uses models developed earlier in the thesis. Simulation and experimental results show that the algorithm leads to improved wheel thrust and thus increased mobility in rough terrain.by Karl David Iagnemma.Ph.D
    corecore