22,848 research outputs found

    Modeling Stochastic Lead Times in Multi-Echelon Systems

    Get PDF
    In many multi-echelon inventory systems, the lead times are random variables. A common and reasonable assumption in most models is that replenishment orders do not cross, which implies that successive lead times are correlated. However, the process that generates such lead times is usually not well defined, which is especially a problem for simulation modeling. In this paper, we use results from queuing theory to define a set of simple lead time processes guaranteeing that (a) orders do not cross and (b) prespecified means and variances of all lead times in the multiechelon system are attained

    On multi-stage production/inventory systems under stochastic demand

    Get PDF
    This paper was presented at the 1992 Conference of the International Society of Inventory Research in Budapest, as a tribute to professor Andrew C. Clark for his inspiring work on multi-echelon inventory models both in theory and practice. It reviews and extends the work of the authors on periodic review serial and convergent multi-echelon systems under stochastic stationary demand. In particular, we highlight the structure of echelon cost functions which play a central role in the derivation of the decomposition results and the optimality of base stock policies. The resulting optimal base stock policy is then compared with an MRP system in terms of cost effectiveness, given a predefined target customer service level. Another extension concerns an at first glance rather different problem; it is shown that the problem of setting safety leadtimes in a multi-stage production-to-order system with stochastic lead times leads to similar decomposition structures as those derived for multi-stage inventory systems. Finally, a discussion on possible extensions to capacitated models, models with uncertainty in both demand and production lead time as well as models with an aborescent structure concludes the paper

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    The effect of foreknowledge of demand in case of a restricted capacity: the single-stage, singleproduct case with lost sales

    Get PDF
    Foreknowledge of demand is useful in the control of a production-inventory system. Knowingthe customer orders in advance makes it possible to anticipate properly. It is an importantcondition to produce and deliver the right quantity of the right product “just-in-time”. Itreduces the need of safety stock and spare capacity. But the question of the effectiveness offoreknowledge is not an easy one. Having foreknowledge of the customer orders does notremove the demand uncertainty completely. The effect of foreknowledge has to be consideredin a stochastic dynamic setting. The subject of this paper is the effect of foreknowledge incombination with a restricted production capacity. The lost-sales case is considered. The mainresult is that for high utilization rates and small forecast horizon, the inventory reduction dueto foreknowledge is equal to (1- pi).h, with h the forecast horizon

    Inventory Model with Seasonal Demand: A Specific Application to Haute Couture

    Get PDF
    In the stochastic multiperiod inventory problem, a vast majority of the literature deals with demand volume uncertainty. Other dimensions of uncertainty have generally been overlooked. In this paper, we develop a newsboy formulation for the aggregate multiperiod inventory problem intended for products of short sales season and without replenishments. A distinguishing characteristic of our formulation is that it takes a time dimension of demand uncertainty into account. The proposed model is particularly suitable for applications in haute couture, i.e., high fashion industry. The model determines the time of switching primary sales effort from one season to the next as well as optimal order quantity for each season with the objective of maximizing expected profit over the planning horizon. We also derive the optimality conditions for the time of switching primary sales effort and order quantity. Furthermore, we show that if time uncertainty and volume uncertainty are independent, order quantity becomes the main decision over the interval of the primary selling season. Finally, we demonstrate that the results from the two-season case can be directly extended to the multi-season case and the limited resource multiple-item case
    • 

    corecore