670 research outputs found

    An agent-based simulator for quantifying the cost of uncertainty in production systems

    Get PDF
    Product-mix problems, where a range of products that generate different incomes compete for a limited set of production resources, are key to the success of many organisations. In their deterministic forms, these are simple optimisation problems; however, the consideration of stochasticity may turn them into analytically and/or computationally intractable problems. Thus, simulation becomes a powerful approach for providing efficient solutions to real-world productmix problems. In this paper, we develop a simulator for exploring the cost of uncertainty in these production systems using Petri nets and agent-based techniques. Specifically, we implement a stochastic version of Goldratt’s PQ problem that incorporates uncertainty in the volume and mix of customer demand. Through statistics, we derive regression models that link the net profit to the level of variability in the volume and mix. While the net profit decreases as uncertainty grows, we find that the system is able to effectively accommodate a certain level of variability when using a Drum-Buffer-Rope mechanism. In this regard, we reveal that the system is more robust to mix than to volume uncertainty. Later, we analyse the cost-benefit trade-off of uncertainty reduction, which has important implications for professionals. This analysis may help them optimise the profitability of investments. In this regard, we observe that mitigating volume uncertainty should be given higher consideration when the costs of reducing variability are low, while the efforts are best concentrated on alleviating mix uncertainty under high costs.This article was financially supported by the State Research Agency of the Spanish Ministry of Science and Innovation (MCIN/AEI/ 10.13039/50110 0 011033), via the project SPUR, with grant ref. PID2020–117021GB-I00. In addition, the authors greatly appreciate the valuable and constructive feedback received from the Editorial team of this journal and two anonymous reviewers in the different stages of the review process

    Tools of the Trade: A Survey of Various Agent Based Modeling Platforms

    Get PDF
    Agent Based Modeling (ABM) toolkits are as diverse as the community of people who use them. With so many toolkits available, the choice of which one is best suited for a project is left to word of mouth, past experiences in using particular toolkits and toolkit publicity. This is especially troublesome for projects that require specialization. Rather than using toolkits that are the most publicized but are designed for general projects, using this paper, one will be able to choose a toolkit that already exists and that may be built especially for one's particular domain and specialized needs. In this paper, we examine the entire continuum of agent based toolkits. We characterize each based on 5 important characteristics users consider when choosing a toolkit, and then we categorize the characteristics into user-friendly taxonomies that aid in rapid indexing and easy reference.Agent Based Modeling, Individual Based Model, Multi Agent Systems

    Selection of simulation tools for improving supply chain performance

    Get PDF
    Simulation is an effective method for improving supply chain performance. However, there is limited advice available to assist practitioners in selecting the most appropriate method for a given problem. Much of the advice that does exist relies on custom and practice rather than a rigorous conceptual or empirical analysis. An analysis of the different modelling techniques applied in the supply chain domain was conducted, and the three main approaches to simulation used were identified; these are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). This research has examined these approaches in two stages. Firstly, a first principles analysis was carried out in order to challenge the received wisdom about their strengths and weaknesses and a series of propositions were developed from this initial analysis. The second stage was to use the case study approach to test these propositions and to provide further empirical evidence to support their comparison. The contributions of this research are both in terms of knowledge and practice. In terms of knowledge, this research is the first holistic cross paradigm comparison of the three main approaches in the supply chain domain. Case studies have involved building ‘back to back’ models of the same supply chain problem using SD and a discrete approach (either DES or ABM). This has led to contributions concerning the limitations of applying SD to operational problem types. SD has also been found to have risks when applied to strategic and policy problems. Discrete methods have been found to have potential for exploring strategic problem types. It has been found that discrete simulation methods can model material and information feedback successfully. Further insights have been gained into the relationship between modelling purpose and modelling approach. In terms of practice, the findings have been summarised in the form of a framework linking modelling purpose, problem characteristics and simulation approach

    Insights on Multi-Agent Systems Applications for Supply Chain Management

    Get PDF
    In this paper, we review relevant literature on the development of multi-agent systems applications for supply chain management. We give a general picture of the state of the art, showing the main applications developed using this novel methodology for analyzing diverse problems in industry. We also analyze generic frameworks for supply chain modelling, showing their main characteristics. We discuss the main topics addressed with this technique and the degree of development of the contributions.Universidad de Sevilla V PPIT-USPiano della Ricerca Dipartimentale 2016-2018 of DICAR-UniC

    Holism versus reductionism in supply chain management: An economic analysis

    Get PDF
    Since supply chains are increasingly built on complex interdependences, concerns to adopt new managerial approaches based on collaboration have surged. Nonetheless, implementing an efficient collaborative solution is a wide process where several obstacles must be faced. This work explores the key role of experimentation as a model-driven decision support system for managers in the convoluted decision-making process required to evolve from a reductionist approach (where the overall strategy is the sum of individual strategies) to a holistic approach (where global optimization is sought through collaboration). We simulate a four-echelon supply chain within a large noise scenario, while a fractional factorial design of experiments (DoE) with eleven factors was used to explore cause-effect relationships. By providing evidence in a wide range of conditions of the superiority of the holistic approach, supply chain participants can be certain to move away from their natural reductionist behavior. Thereupon, practitioners focus on implementing the solution. The theory of constraints (TOC) defines an appropriate framework, where the Drum–Buffer–Rope (DBR) method integrates supply chain processes and synchronizes decisions. In addition, this work provides evidence of the need for aligning incentives in order to eliminate the risk to deviate. Modeling and simulation, especially agent-based techniques, allows practitioners to develop awareness of complex organizational problems. Hence, these prototypes can be interpreted as forceful laboratories for decision making and business transformation

    Agen Based Modeling for Corn Supply Chain Risks Identification and Sales Negotiation in PTPN VIII

    Get PDF
    PTPN VIII is a state-owned company in West Java cultivating several kinds of commodities, and still have three marginal farmlands with a total size of 3000 hectares open for investment for corn. The type of corn that would be produced is corn feed for poultry needs. Three agents are involved in this agent-based model: the farmers (or cooperatives), PTPN VIII, and the buyers of the corn yields. All agents face risks in doing their businesses which hamper or reduce their probability of achieving their business goals. The potential risks are identified using fuzzy reasoning method. The three blocks of farmland have different levels of fertility. Farmers are expected to compete for the hunt of farmland to rent for cultivating corns, until their funds run out. They must prepare the land, procure their best corn seeds, plant and maintain the crops, and eventually harvest, dry and sell their corn yield. The dryness of the corn grains dictates the selling price. The buyers will buy the corns until their demands are fulfilled for the particular season. There will be a negotiation process between agents to reach an agreement. Each agent seeks to achieve its goal. This is why agent-based modelling is employed. Netlogo software is used to develop the model. Based on fuzzy reasoning method the obtained result shows that the most potential risk is quality risk. The negotiation results show that when both buyer and seller experience heightened degree of risk appetite, the shortest negotiations are achieved. Keyword
    • …
    corecore