46 research outputs found

    Applications of Remote Sensing to Alien Invasive Plant Studies

    Get PDF
    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions

    Ecological applications of remote sensing data in neotropical rainforests

    Get PDF
    Understanding species' distributions is a central theme of biodiversity studies. A combination of data derived from moderate and high spectral resolution satellite imagery (vegetation indices and hyperspectral narrow bands, respectively) was used to address questions regarding tree species' distributions, vegetation phenology, and influences on bird seasonal movements in tropical rainforests. Vegetation indices were used in ecological niche modeling to predict movement patterns of a tropical canopy frugivorous bird in Central America: the predicted distributions generally recovered observed non-breeding ranges, but estimated lowland areas for the breeding range, which is restricted to middle elevations. Hyperspectral imagery provided sufficient spectral information to discriminate crowns of five different tree taxa that represent food resources for macaws and peccaries in southeastern Peru. Tree spectra showed significant temporal variation, suggesting that it is possible to study tree phenology remotely. Current and future developments of remote sensing techniques permit regional studies of ecosystem functions and structure

    Master of Science

    Get PDF
    thesisVegetation phenology results in seasonal changes in spectral reflectance. Phenology is often underutilized in hyperspectral vegetation mapping due to a lack of repeat imagery of the same region over time. Vegetation classification at the species level could benefit from introducing phenological information to spectral libraries. New missions, such as the proposed Hysperspectral Infrared Imager (HyspIRI) mission, could potentially provide easy access to multi-temporal datasets. The availability of these data will require new approaches to building spectral libraries for species classification. This paper explores the use of Iterative Endmember Selection (IES), an automated method for selecting endmembers from an image-derived spectral library, to create single-date and multitemporal endmember libraries. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to classify vegetation species and land cover, applying single-date and multitemporal libraries to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data acquired on five dates in the same year. Three applications of endmember libraries were tested for their ability to classify single date AVIRIS images: 1) single-date libraries that matched the image date (same-date libraries), 2) single-date libraries that were not matched to the image date (mismatched-date libraries), and 3) a combined multitemporal library containing spectra from all dates applied to all image dates. Results indicate that multitemporal, seasonally-mixed spectral libraries achieved similar overall classification accuracy compared to single-date libraries, and in some cases, resulted in improved classification accuracy. Several species had increased producer's or user accuracy using a multitemporal library, while others had reduced accuracy compared to same-date classifications. The image dates of selected endmembers from the multitemporal library were examined to determine if this information could improve our understanding of phenological spectral differences for specific species. Results demonstrate that multitemporal endmember libraries may provide a more robust alternative to single-date endmember libraries for mapping vegetation species across time and space. Multitemporal endmember libraries could provide a means for mapping species in data where phenology, climatic variability, or spatial gradients are not known in advance or may not be easily accounted for by endmembers from a single date

    Characterization of indicator tree species in neotropical environments and implications for geological mapping

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOGeobotanical remote sensing (GbRS) in the strict sense is an indirect approach to obtain geological information in heavily vegetated areas for mineral prospecting and geological mapping. Using ultra- and hyperspectral technologies, the goals of this resea216385400FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2010/51758-2, 2010/51718-0309712/2017-3, 302925/2015-

    Kalman Filtering and Expectation Maximization for Multitemporal Spectral Unmixing

    Full text link
    The recent evolution of hyperspectral imaging technology and the proliferation of new emerging applications presses for the processing of multiple temporal hyperspectral images. In this work, we propose a novel spectral unmixing (SU) strategy using physically motivated parametric endmember representations to account for temporal spectral variability. By representing the multitemporal mixing process using a state-space formulation, we are able to exploit the Bayesian filtering machinery to estimate the endmember variability coefficients. Moreover, by assuming that the temporal variability of the abundances is small over short intervals, an efficient implementation of the expectation maximization (EM) algorithm is employed to estimate the abundances and the other model parameters. Simulation results indicate that the proposed strategy outperforms state-of-the-art multitemporal SU algorithms

    Classification of Expansive Grassland Species in Different Growth Stages Based on Hyperspectral and LiDAR Data

    Get PDF
    Expansive species classification with remote sensing techniques offers great support for botanical field works aimed at detection of their distribution within areas of conservation value and assessment of the threat caused to natural habitats. Large number of spectral bands and high spatial resolution allows for identification of particular species. LiDAR (Light Detection and Ranging) data provide information about areas such as vegetation structure. Because the species differ in terms of features during the growing season, it is important to know when their spectral responses are unique in the background of the surrounding vegetation. The aim of the study was to identify two expansive grass species: Molinia caerulea and Calamagrostis epigejos in the Natura 2000 area in Poland depending on the period and dataset used. Field work was carried out during late spring, summer and early autumn, in parallel with remote sensing data acquisition. Airborne 1-m resolution HySpex images and LiDAR data were used. HySpex images were corrected geometrically and atmospherically before Minimum Noise Fraction (MNF) transformation and vegetation indices calculation. Based on a LiDAR point cloud generated Canopy Height Model, vegetation structure from discrete and full-waveform data and topographic indexes were generated. Classifications were performed using a Random Forest algorithm. The results show post-classification maps and their accuracies: Kappa value and F1 score being the harmonic mean of producer (PA) and user (UA) accuracy, calculated iteratively. Based on these accuracies and botanical knowledge, it was possible to assess the best identification date and dataset used for analysing both species. For M. caerulea the highest median Kappa was 0.85 (F1 = 0.89) in August and for C. epigejos 0.65 (F1 = 0.73) in September. For both species, adding discrete or full-waveform LiDAR data improved the results. We conclude that hyperspectral (HS) and LiDAR airborne data could be useful to id

    <i>Ailanthus altissima</i> mapping from multi-temporal very high resolution satellite images

    Get PDF
    This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of Southern Italy. The technique used relied on a two-stage hybrid classification process: the first stage applied a knowledge-driven learning scheme to provide a land cover map (LC), including deciduous vegetation and other classes, without the need of reference training data; the second stage exploited a data-driven classification to: (i) discriminate pixels of the invasive species found within the deciduous vegetation layer of the LC map; (ii) determine the most favourable seasons for such recognition. In the second stage, when a traditional Maximum Likelihood classifier was used, the results obtained with multi-temporal July and October WV-2 images, showed an output Overall Accuracy (OA) value of ?91%. To increase such a value, first a low-pass median filtering was used with a resulting OA of 99.2%, then, a Support Vector Machine classifier was applied obtaining the best A. altissima User\u27s Accuracy (UA) and OA values of 82.47% and 97.96%, respectively, without any filtering. When instead of the full multi-spectral bands set some spectral vegetation indices computed from the same months were used the UA and OA values decreased. The findings reported suggest that multi-temporal, very high resolution satellite imagery can be effective for A. altissima mapping, especially when airborne hyperspectral data are unavailable. Since training data are required only in the second stage to discriminate A. altissima from other deciduous plants, the use of the first stage LC mapping as pre-filter can render the hybrid technique proposed cost and time effective. Multi-temporal VHR data and the hybrid system suggested may offer new opportunities for invasive plant monitoring and follow up of management decision

    Forest Biodiversity Monitoring Based on Remotely Sensed Spectral Diversity - A Review

    Get PDF
    Forests are essential for global environmental well-being because of their rich provision of ecosystem services and regulating factors. Global forests are under increasing pressure from climate change, resource extraction, and anthropologically-driven disturbances. The results are dramatic losses of habitats accompanied with the reduction of species diversity. There is the urgent need for forest biodiversity monitoring comprising analysis on alpha, beta, and gamma scale to identify hotspots of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal resolutions. Concepts of remotely sensed spectral diversity have been identified as promising methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review provides a first time focus on the three spectral diversity concepts vegetation indices, spectral information content, and spectral species for forest biodiversity monitoring based on airborne and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify multispectral sensors as primary data source which underlines the focus on optical diversity as a proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral information content. In recent years, the spectral species concept has raised attention and has been applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral communities. Novel remote sensing processing capacities and the provision of complementary remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future
    corecore