21 research outputs found

    The Double Pentaladder Integral to All Orders

    Get PDF
    We compute dual-conformally invariant ladder integrals that are capped off by pentagons at each end of the ladder. Such integrals appear in six-point amplitudes in planar N=4 super-Yang-Mills theory. We provide exact, finite-coupling formulas for the basic double pentaladder integrals as a single Mellin integral over hypergeometric functions. For particular choices of the dual conformal cross ratios, we can evaluate the integral at weak coupling to high loop orders in terms of multiple polylogarithms. We argue that the integrals are exponentially suppressed at strong coupling. We describe the space of functions that contains all such double pentaladder integrals and their derivatives, or coproducts. This space, a prototype for the space of Steinmann hexagon functions, has a simple algebraic structure, which we elucidate by considering a particular discontinuity of the functions that localizes the Mellin integral and collapses the relevant symbol alphabet. This function space is endowed with a coaction, both perturbatively and at finite coupling, which mixes the independent solutions of the hypergeometric differential equation and constructively realizes a coaction principle of the type believed to hold in the full Steinmann hexagon function space.Comment: 70 pages, 3 figures, 4 tables; v2, minor typo corrections and clarification

    Glosarium Matematika

    Get PDF

    Spin observables and spin structure functions: inequalities and dynamics

    Full text link
    Model-independent identities and inequalities relating the various spin observables of a reaction are reviewed in a unified formalism, together with their implications for dynamical models, their physical interpretation, and the quantum aspects of the information carried by spins, in particular entanglement. These constraints between observables can be obtained from the explicit expression of the observables in terms of a set of amplitudes, a non-trivial algebraic exercise which can be preceded by numerical simulation with randomly chosen amplitudes, from anticommutation relations, or from the requirement that any polarisation vector is less than unity. The most powerful tool is the positivity of the density matrices describing the reaction or its crossed channels, with a projection to single out correlations between two or three observables. For the exclusive reactions, the cases of the strangeness-exchange proton-antiproton scattering and the photoproduction of pseudoscalar mesons are treated in some detail: all triples of observables are constrained, and new results are presented for the allowed domains. The positivity constraints for total cross-sections and single-particle inclusive reactions are reviewed, with application to spin-dependent structure functions and parton distributions. The corresponding inequalities are shown to be preserved by the evolution equations of QCD.Comment: 135 pages, 37 figures, pdflatex, to appear in Physics Reports, new subsections added, typos corrected, references adde

    Integrability, Recursion Operators and Soliton Interactions

    Get PDF
    This volume contains selected papers based on the talks,presented at the Conference "Integrability, Recursion Operators and Soliton Interactions", held in Sofia, Bulgaria (29 - 31 August 2012) at the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. Included are also invited papers presenting new research developments in the thematic area. The Conference was dedicated to the 65-th birthday of our esteemed colleague and friend Vladimir Gerdjikov. The event brought together more than 30 scientists, from 6 European countries to celebrate Vladimir's scientific achievements. All participants enjoyed a variety of excellent talks in a friendly and stimulating atmosphere. The main topics of the conference were those where Vladimir has contributed enormously during his career: integrable nonlinear partial differential equations, underlying algebraic and geometric structures of the integrable systems, soliton solutions, soliton interactions, quantum integrable systems, discrete integrable systems and applications of the nonlinear models. The papers, included in this volume will be useful to researchers with interests in these areas

    This Week's Finds in Mathematical Physics (1-50)

    Full text link
    These are the first 50 issues of This Week's Finds of Mathematical Physics, from January 19, 1993 to March 12, 1995. These issues focus on quantum gravity, topological quantum field theory, knot theory, and applications of nn-categories to these subjects. However, there are also digressions into Lie algebras, elliptic curves, linear logic and other subjects. They were typeset in 2020 by Tim Hosgood. If you see typos or other problems please report them. (I already know the cover page looks weird).Comment: 242 page

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore