1,384 research outputs found

    Random knots in three-dimensional three-colour percolation: numerical results and conjectures

    Full text link
    Three-dimensional three-colour percolation on a lattice made of tetrahedra is a direct generalization of two-dimensional two-colour percolation on the triangular lattice. The interfaces between one-colour clusters are made of bicolour surfaces and tricolour non-intersecting and non-self-intersecting curves. Because of the three-dimensional space, these curves describe knots and links. The present paper presents a construction of such random knots using particular boundary conditions and a numerical study of some invariants of the knots. The results are sources of precise conjectures about the limit law of the Alexander polynomial of the random knots.Comment: minor corrections in the text since v

    Quantum geometry and quantum algorithms

    Get PDF
    Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are geometric in nature, we provide a quantum algorithm that efficiently approximates the colored Jones polynomial. The construction is based on the complete solution of Chern-Simons topological quantum field theory and its connection to Wess-Zumino-Witten conformal field theory. The colored Jones polynomial is expressed as the expectation value of the evolution of the q-deformed spin-network quantum automaton. A quantum circuit is constructed capable of simulating the automaton and hence of computing such expectation value. The latter is efficiently approximated using a standard sampling procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The Quantum Universe'' in honor of G. C. Ghirard
    • 

    corecore