27,106 research outputs found

    Introduction to Random Signals and Noise

    Get PDF
    Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals.\ud \ud Key features:\ud • Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains.\ud • Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver.\ud • Examines optimal filtering methods and their consequences.\ud • Presents a detailed discussion of the topic of Poisson processed and shot noise.\u

    Nonsquare Spectral Factorization for Nonlinear Control Systems

    Get PDF
    This paper considers nonsquare spectral factorization of nonlinear input affine state space systems in continuous time. More specifically, we obtain a parametrization of nonsquare spectral factors in terms of invariant Lagrangian submanifolds and associated solutions of Hamilton–Jacobi inequalities. This inequality is a nonlinear analogue of the bounded real lemma and the control algebraic Riccati inequality. By way of an application, we discuss an alternative characterization of minimum and maximum phase spectral factors and introduce the notion of a rigid nonlinear system.

    General Framework for the Behaviour of Continuously Observed Open Quantum Systems

    Get PDF
    We develop the general quantum stochastic approach to the description of quantum measurements continuous in time. The framework, that we introduce, encompasses the various particular models for continuous-time measurements condsidered previously in the physical and the mathematical literature.Comment: 30 pages, no figure

    Driven Lattice Gases with Quenched Disorder: Exact Results and Different Macroscopic Regimes

    Full text link
    We study the effect of quenched spatial disorder on the steady states of driven systems of interacting particles. Two sorts of models are studied: disordered drop-push processes and their generalizations, and the disordered asymmetric simple exclusion process. We write down the exact steady-state measure, and consequently a number of physical quantities explicitly, for the drop-push dynamics in any dimensions for arbitrary disorder. We find that three qualitatively different regimes of behaviour are possible in 1-dd disordered driven systems. In the Vanishing-Current regime, the steady-state current approaches zero in the thermodynamic limit. A system with a non-zero current can either be in the Homogeneous regime, chracterized by a single macroscopic density, or the Segregated-Density regime, with macroscopic regions of different densities. We comment on certain important constraints to be taken care of in any field theory of disordered systems.Comment: RevTex, 17pages, 18 figures included using psfig.st

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201
    corecore