10,783 research outputs found

    Designing a programming-based approach for modelling scientific phenomena

    Get PDF
    We describe an iteratively designed sequence of activities involving the modelling of 1- dimensional collisions between moving objects based on programming in ToonTalk. Students aged 13-14 in two settings (London and Cyprus) investigated a number of collision situations, classified into six classes based on the relative velocities and masses of the colliding objects. We describe iterations of the system in which students engaged in a repeating cycle of activity for each collision class: prediction of object behaviour from given collision conditions, observation of a relevant video clip, building a model to represent the phenomena, testing, validating and refining their model, and publishing it – together with comments – on our web-based collaboration system, WebReports. Students were encouraged to consider the limitations of their current model, with the aim that they would eventually appreciate the benefit of constructing a general model that would work for all collision classes, rather than a different model for each class. We describe how our intention to engage students with the underlying concepts of conservation, closed systems and system states was instantiated in the activity design, and how the modelling activities afforded an alternative representational framework to traditional algebraic description

    A mathematica‐based CAL matrix‐theory tutor for scientists and engineers

    Get PDF
    Under the TLTP initiative, the Mathematics Departments at Imperial College and Leeds University are jointly developing a CAL method directed at supplementing the level of mathematics of students entering science and engineering courses from diverse A‐level (or equivalent) backgrounds. The aim of the joint project is to maintain — even increase ‐ the number of students enrolling on such first‐year courses without lowering the courses’ existing mathematical standards

    The AutoProof Verifier: Usability by Non-Experts and on Standard Code

    Get PDF
    Formal verification tools are often developed by experts for experts; as a result, their usability by programmers with little formal methods experience may be severely limited. In this paper, we discuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional correctness of object-oriented software. In particular, we present our experiences of using AutoProof in two contrasting contexts representative of non-expert usage. First, we discuss its usability by students in a graduate course on software verification, who were tasked with verifying implementations of various sorting algorithms. Second, we evaluate its usability in verifying code developed for programming assignments of an undergraduate course. The first scenario represents usability by serious non-experts; the second represents usability on "standard code", developed without full functional verification in mind. We report our experiences and lessons learnt, from which we derive some general suggestions for furthering the development of verification tools with respect to improving their usability.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    A Human-Centric System for Symbolic Reasoning About Code

    Get PDF
    While testing and tracing on specific input values are useful starting points for students to understand program behavior, ultimately students need to be able to reason rigorously and logically about the correctness of their code on all inputs without having to run the code. Symbolic reasoning is reasoning abstractly about code using arbitrary symbolic input values, as opposed to specific concrete inputs. The overarching goal of this research is to help students learn symbolic reasoning, beginning with code containing simple assertions as a foundation and proceeding to code involving data abstractions and loop invariants. Toward achieving this goal, this research has employed multiple experiments across five years at three institutions: a large, public university, an HBCU (Historically Black Colleges and Universities), and an HSI (Hispanic Serving Institution). A total of 862 students participated across all variations of the study. Interactive, online tools can enhance student learning because they can provide targeted help that would be prohibitively expensive without automation. The research experiments employ two such symbolic reasoning tools that had been developed earlier and a newly designed human-centric reasoning system (HCRS). The HCRS is a first step in building a generalized tutor that achieves a level of resolution necessary to identify difficulties and suggest appropriate interventions. The experiments show the value of tools in pinpointing and classifying difficulties in learning symbolic reasoning, as well as in learning design-by-contract assertions and applying them to develop loop invariants for code involving objects. Statistically significant results include the following. Students are able to learn symbolic reasoning with the aid of instruction and an online tool. Motivation improves student perception and attitude towards symbolic reasoning. Tool usage improves student performance on symbolic reasoning, their explanations of the larger purpose of code segments, and self-efficacy for all subpopulations

    Exploring the mathematics of motion through construction and collaboration

    Get PDF
    In this paper we give a detailed account of the design principles and construction of activities designed for learning about the relationships between position, velocity and acceleration, and corresponding kinematics graphs. Our approach is model-based, that is, it focuses attention on the idea that students constructed their own models – in the form of programs – to formalise and thus extend their existing knowledge. In these activities, students controlled the movement of objects in a programming environment, recording the motion data and plotting corresponding position-time and velocity-time graphs. They shared their findings on a specially-designed web-based collaboration system, and posted cross-site challenges to which others could react. We present learning episodes that provide evidence of students making discoveries about the relationships between different representations of motion. We conjecture that these discoveries arose from their activity in building models of motion and their participation in classroom and online communities

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453
    corecore