990 research outputs found

    Switched networks and complementarity

    Get PDF
    A modeling framework is proposed for circuits that are subject both to externally induced switches (time events) and to state events. The framework applies to switched networks with linear and piecewise-linear elements, including diodes. We show that the linear complementarity formulation, which already has proved effective for piecewise-linear networks, can be extended in a natural way to also cover switching circuits. To achieve this, we use a generalization of the linear complementarity problem known as the cone-complementarity problem. We show that the proposed framework is sound in the sense that existence and uniqueness of solutions is guaranteed under a passivity assumption. We prove that only first-order impulses occur and characterize all situations that give rise to a state jump; moreover, we provide rules that determine the jump. Finally, we show that within our framework, energy cannot increase as a result of a jump, and we derive a stability result from this

    Robust set stabilization of Boolean control networks with impulsive effects

    Get PDF
    This paper addresses the robust set stabilization problem of Boolean control networks (BCNs) with impulsive effects via the semi-tensor product method. Firstly, the closed-loop system consisting of a BCN with impulsive effects and a given state feedback control is converted into an algebraic form. Secondly, based on the algebraic form, some necessary and sufficient conditions are presented for the robust set stabilization of BCNs with impulsive effects under a given state feedback control and a free-form control sequence, respectively. Thirdly, as applications, some necessary and sufficient conditions are presented for robust partial stabilization and robust output tracking of BCNs with impulsive effects, respectively. The study of two illustrative examples shows that the obtained new results are effective
    • …
    corecore