1,559 research outputs found

    An observer-based attitude and nutation control and flexible dynamic analysis for the NASA Magnetospheric Multiscale Mission

    Get PDF
    Current research with the NASA Goddard Space Flight Center (GSFC) involves the dynamic modeling and control of the NASA Magnetospheric Multiscale (MMS) Mission, a. Solar-Terrestrial Probe mission to study Earth\u27s magnetosphere. Four observer-based attitude and nutrition controllers are designed and evaluated to determine the most effective feedback control system as it applies to MMS. Also, a dynamic analysis of each of the four identical satellites\u27 two Axial Double Probe (ADP) booms is performed to provide an understanding of flexible boom dynamics. The Finite Element method is used in evaluating boom modes of vibration for confirmation of NASA GSFC theoretical analysis and use in flexible model development. The dynamic transient and modal extraction technique are investigated for vibration analysis of constrained and unconstrained bodies. A fully flexible boom and rigid spacecraft model is also developed for vibrational analysis under steady-state rotation and thruster loads. Results indicate, however, the need for future research in numerical analysis of propagating systems through finite element methods and in the stability of the observer-based control system. Linear and nonlinear observers are developed through simulations to estimate satellite attitude and angular body rates without the use of rate sensors. Control systems are then developed assuming perfect state measurements. Euler angles are used to describe satellite attitude in this research. Finally, linear and nonlinear (Sliding Mode Control) techniques are implemented in conjunction with the nonlinear observers to complete the observer-based control system. The results of this research show that, of the methods analyzed, both the Extended Kalman Filter and Sliding Mode Observer implemented with Sliding Mode Control yield the most satisfactory performance. These observer-based control systems both meet NASA design requirements while reducing thruster control effort and reducing the effects of measurement noise and spacecraft uncertainties/disturbances. More simulations, however, are needed to verify performance of the proposed observer-based control system over all possible ranges of operation

    Development and evaluation of a Kalman-filter algorithm for terminal area navigation using sensors of moderate accuracy

    Get PDF
    Translational state estimation in terminal area operations, using a set of commonly available position, air data, and acceleration sensors, is described. Kalman filtering is applied to obtain maximum estimation accuracy from the sensors but feasibility in real-time computations requires a variety of approximations and devices aimed at minimizing the required computation time with only negligible loss of accuracy. Accuracy behavior throughout the terminal area, its relation to sensor accuracy, its effect on trajectory tracking errors and control activity in an automatic flight control system, and its adequacy in terms of existing criteria for various terminal area operations are examined. The principal investigative tool is a simulation of the system

    Model Predictive Control Applications to Spacecraft Rendezvous and Small Bodies Exploration

    Get PDF
    The overarching goal of this thesis is the design of model predictive control algorithms for spacecraft proximity operations. These include, but it is not limited to, spacecraft rendezvous, hovering phases or orbiting in the vicinity of small bodies. The main motivation behind this research is the increasing demand of autonomy, understood as the spacecraft capability to compute its own control plan, in current and future space operations. This push for autonomy is fostered by the recent introduction of disruptive technologies changing the traditional concept of space exploration and exploitation. The development of miniaturized satellite platforms and the drastic cost reduction in orbital access have boosted space activity to record levels. In the near future, it is envisioned that numerous artificial objects will simultaneously operate across the Solar System. In that context, human operators will be overwhelmed in the task of tracking and commanding each spacecraft in real time. As a consequence, developing intelligent and robust autonomous systems has been identified by several space agencies as a cornerstone technology. Inspired by the previous facts, this work presents novel controllers to tackle several scenarios related to spacecraft proximity operations. Mastering proximity operations enables a wide variety of space missions such as active debris removal, astronauts transportation, flight-formation applications, space stations resupply and the in-situ exploration of small bodies. Future applications may also include satellite inspection and servicing. This thesis has focused on four scenarios: six-degrees of freedom spacecraft rendezvous; near-rectilinear halo orbits rendezvous; the hovering phase; orbit-attitude station-keeping in the vicinity of a small body. The first problem aims to demonstrate rendezvous capabilities for a lightweight satellite with few thrusters and a reaction wheels array. For near-rectilinear halo orbits rendezvous, the goal is to achieve higher levels of constraints satisfaction than with a stateof- the-art predictive controller. In the hovering phase, the objective is to augment the control accuracy and computational efficiency of a recent global stable controller. The small body exploration aims to demonstrate the positive impact of model-learning in the control accuracy. Although based on model predictive control, the specific approach for each scenario differs. In six-degrees of freedom rendezvous, the attitude flatness property and the transition matrix for Keplerian-based relative are used to obtain a non-linear program. Then, the control loop is closed by linearizing the system around the previous solution. For near-rectilinear halo orbits rendezvous, the constraints are assured to be satisfied in the probabilistic sense by a chance-constrained approach. The disturbances statistical properties are estimated on-line. For the hovering phase problem, an aperiodic event-based predictive controller is designed. It uses a set of trigger rules, defined using reachability concepts, deciding when to execute a single-impulse control. In the small body exploration scenario, a novel learning-based model predictive controller is developed. This works by integrating unscented Kalman filtering and model predictive control. By doing so, the initially unknown small body inhomogeneous gravity field is estimated over time which augments the model predictive control accuracy.El objeto de esta tesis es el dise˜no de algoritmos de control predictivo basado en modelo para operaciones de veh´ıculos espaciales en proximidad. Esto incluye, pero no se limita, a la maniobra de rendezvous, las fases de hovering u orbitar alrededor de cuerpos menores. Esta tesis est´a motivada por la creciente demanda en la autonom´ıa, entendida como la capacidad de un veh´ıculo para calcular su propio plan de control, de las actuales y futuras misiones espaciales. Este inter´es en incrementar la autonom´ıa est´a relacionado con las actuales tecnolog´ıas disruptivas que est´an cambiando el concepto tradicional de exploraci´on y explotaci´on espacial. Estas son el desarrollo de plataformas satelitales miniaturizadas y la dr´astica reducci´on de los costes de puesta en ´orbita. Dichas tecnolog´ıas han impulsado la actividad espacial a niveles de record. En un futuro cercano, se prev´e que un gran n´umero de objetos artificiales operen de manera simult´anea a lo largo del Sistema Solar. Bajo dicho escenario, los operadores terrestres se ver´an desbordados en la tarea de monitorizar y controlar cada sat´elite en tiempo real. Es por ello que el desarrollo de sistemas aut´onomos inteligentes y robustos es considerado una tecnolog´ıa fundamental por diversas agencias espaciales. Debido a lo anterior, este trabajo presenta nuevos resultados en el control de operaciones de veh´ıculos espaciales en proximidad. Dominar dichas operaciones permite llevar a cabo una gran variedad de misiones espaciales como la retirada de basura espacial, transferir astronautas, aplicaciones de vuelo en formaci´on, reabastecer estaciones espaciales y la exploraci ´on de cuerpos menores. Futuras aplicaciones podr´ıan incluir operaciones de inspecci´on y mantenimiento de sat´elites. Esta tesis se centra en cuatro escenarios: rendezvous de sat´elites con seis grados de libertad; rendezvous en ´orbitas halo cuasi-rectil´ıneas; la fase de hovering; el mantenimiento de ´orbita y actitud en las inmendiaciones de un cuerpo menor. El primer caso trata de proveer capacidades de rendezvous para un sat´elite ligero con pocos propulsores y un conjunto de ruedas de reacci´on. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, se intenta aumentar el grado de cumplimiento de restricciones con respecto a un controlador predictivo actual. Para la fase de hovering, se mejora la precisi´on y eficiencia computacional de un controlador globalmente estable. En la exploraci´on de un cuerpo menor, se pretende demostrar el mayor grado de precisi´on que se obtiene al aprender el modelo. Siendo la base el control predictivo basado en modelo, el enfoque espec´ıfico difiere para cada escenario. En el rendezvous con seis grados de libertad, se obtiene un programa no-lineal con el uso de la propiedad flatness de la actitud y la matriz de transici´on del movimiento relativo Kepleriano. El bucle de control se cierra linealizando en torno a la soluci´on anterior. Para el rendezvous en ´orbitas halo cuasi-rectil´ıneas, el cumplimiento de restricciones se garantiza probabil´ısticamente mediante la t´ecnica chance-constrained. Las propiedades estad´ısticas de las perturbaciones son estimadas on-line. En la fase de hovering, se usa el control predictivo basado en eventos. Ello consiste en unas reglas de activaci´on, definidas con conceptos de accesibilidad, que deciden la ejecuci´on de un ´unico impulso de control. En la exploraci´on de cuerpos menores, se desarrolla un controlador predictivo basado en el aprendizaje del modelo. Funciona integrando un filtro de Kalman con control predictivo basado en modelo. Con ello, se consigue estimar las inomogeneidades del campo gravitario lo que repercute en una mayor precisi´on del controlador predictivo basado en modelo

    DECENTRALIZED ROBUST NONLINEAR MODEL PREDICTIVE CONTROLLER FOR UNMANNED AERIAL SYSTEMS

    Get PDF
    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1 A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2 A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3 An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4 A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible

    Spacecraft Position Estimation and Attitude Determination using Terrestrial Illumination Matching

    Get PDF
    An algorithm to conduct spacecraft position estimation and attitude determination via terrestrial illumination matching (TIM) is presented consisting of a novel method that uses terrestrial lights as a surrogate for star fields. Although star sensors represent a highly accurate means of attitude determination with considerable spaceflight heritage, with Global Positioning System (GPS) providing position, TIM provides a potentially viable alternative in the event of star sensor or GPS malfunction or performance degradation. The research defines a catalog of terrestrial light constellations, which are then implemented within the TIM algorithm for position acquisition of a generic spacecraft bus. With the algorithm relying on terrestrial lights rather than the established standard of star fields, a series of sensitivity studies are showcased to determine performance during specified operating constraints, to include varying orbital altitude and cloud cover conditions. The pose is recovered from the matching techniques by solving the epipolar constraint equation using the Essential and Fundamental matrix, and point-to-point projection using the Homography matrix. This is used to obtain relative position change and the spacecraft\u27s attitude when there is a measurement. When there is not, both an extended and an unscented Kalman filter are applied to test continuous operation between measurements. The research is operationally promising for use with each nighttime pass, but filtering is not enough to sustain orbit determination during daytime operations

    Relative Motion Guidance, Navigation and Control for Autonomous Orbital Rendezvous

    Get PDF
    In this paper, the dynamics of the relative motion problem in a perturbed orbital environment are exploited based on Gauss’ variational equations. The relative coordinate frame (Hill frame) is studied to describe the relative motion. A linear high fidelity model is developed to describe the relative motion. This model takes into account primary gravitational and atmospheric drag perturbations. In addition, this model is used in the design of a control, guidance, and navigation system of a chaser vehicle to approach towards and to depart from a target vehicle in proximity operations. Relative navigation uses an extended Kalman flter based on this relative model to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyros biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated Light Detection and Ranging (LIDAR) system, along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix and other filter parameters are provided. Numerical simulations are performed to assess the precision of this model with respect to the full nonlinear model. The analyses include the navigations errors, trajectory dispersions, and attitude dispersions. © 2014, Journal of Aerospace Technology and Management

    1999 Flight Mechanics Symposium

    Get PDF
    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Investigation of air transportation technology at Princeton University, 1991-1992

    Get PDF
    The Air Transportation Research Program at Princeton University proceeded along six avenues during the past year: (1) intelligent flight control; (2) computer-aided control system design; (3) neural networks for flight control; (4) stochastic robustness of flight control systems; (5) microburst hazards to aircraft; and (6) fundamental dynamics of atmospheric flight. This research has resulted in a number of publications, including archival papers and conference papers. An annotated bibliography of publications that appeared between June 1991 and June 1992 appears at the end of this report. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period

    AUTONOMOUS QUADROTOR COLLISION AVOIDANCE AND DESTINATION SEEKING IN A GPS-DENIED ENVIRONMENT

    Get PDF
    This thesis presents a real-time autonomous guidance and control method for a quadrotor in a GPS-denied environment. The quadrotor autonomously seeks a destination while it avoids obstacles whose shape and position are initially unknown. We implement the obstacle avoidance and destination seeking methods using off-the-shelf sensors, including a vision-sensing camera. The vision-sensing camera detects the positions of points on the surface of obstacles. We use this obstacle position data and a potential-field method to generate velocity commands. We present a backstepping controller that uses the velocity commands to generate the quadrotor\u27s control inputs. In indoor experiments, we demonstrate that the guidance and control methods provide the quadrotor with sufficient autonomy to fly point to point, while avoiding obstacles
    corecore