55,236 research outputs found

    Minimal realizations of linear systems: The "shortest basis" approach

    Get PDF
    Given a controllable discrete-time linear system C, a shortest basis for C is a set of linearly independent generators for C with the least possible lengths. A basis B is a shortest basis if and only if it has the predictable span property (i.e., has the predictable delay and degree properties, and is non-catastrophic), or alternatively if and only if it has the subsystem basis property (for any interval J, the generators in B whose span is in J is a basis for the subsystem C_J). The dimensions of the minimal state spaces and minimal transition spaces of C are simply the numbers of generators in a shortest basis B that are active at any given state or symbol time, respectively. A minimal linear realization for C in controller canonical form follows directly from a shortest basis for C, and a minimal linear realization for C in observer canonical form follows directly from a shortest basis for the orthogonal system C^\perp. This approach seems conceptually simpler than that of classical minimal realization theory.Comment: 20 pages. Final version, to appear in special issue of IEEE Transactions on Information Theory on "Facets of coding theory: From algorithms to networks," dedicated to Ralf Koette

    Conformal Field Theories, Representations and Lattice Constructions

    Get PDF
    An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z2Z_2-twisted theories, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) respectively, which may be constructed from a suitable even Euclidean lattice Λ\Lambda. Similarly, one may construct lattices ΛC\Lambda_C and Λ~C\tilde\Lambda_C by analogous constructions from a doubly-even binary code CC. In the case when CC is self-dual, the corresponding lattices are also. Similarly, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) are self-dual if and only if Λ\Lambda is. We show that H(ΛC)H(\Lambda_C) has a natural ``triality'' structure, which induces an isomorphism H(Λ~C)≡H~(ΛC)H(\tilde\Lambda_C)\equiv\tilde H(\Lambda_C) and also a triality structure on H~(Λ~C)\tilde H(\tilde\Lambda_C). For CC the Golay code, Λ~C\tilde\Lambda_C is the Leech lattice, and the triality on H~(Λ~C)\tilde H(\tilde\Lambda_C) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.Comment: 65 page

    Sphere packing bounds via spherical codes

    Full text link
    The sphere packing problem asks for the greatest density of a packing of congruent balls in Euclidean space. The current best upper bound in all sufficiently high dimensions is due to Kabatiansky and Levenshtein in 1978. We revisit their argument and improve their bound by a constant factor using a simple geometric argument, and we extend the argument to packings in hyperbolic space, for which it gives an exponential improvement over the previously known bounds. Additionally, we show that the Cohn-Elkies linear programming bound is always at least as strong as the Kabatiansky-Levenshtein bound; this result is analogous to Rodemich's theorem in coding theory. Finally, we develop hyperbolic linear programming bounds and prove the analogue of Rodemich's theorem there as well.Comment: 30 pages, 2 figure

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page
    • …
    corecore