422 research outputs found

    Reasoning About Loops Using Vampire in KeY

    Get PDF
    We describe symbol elimination and consequence finding in the first-order theorem prover Vampire for automatic generation of quantified invariants, possibly with quantifier alternations, of loops with arrays. Unlike the previous implementation of symbol elimination in Vampire, our work is not limited to a specific programming language but provides a generic framework by relying on a simple guarded command representation of the input loop. We also improve the loop analysis part in Vampire by generating loop properties more easily handled by the saturation engine of Vampire. Our experiments show that, with our changes, the number of generated invariants is decreased, in some cases, by a factor of 20. We also provide a framework to use our approach to invariant generation in conjunction with pre- and post-conditions of program loops. We use the program specification to find relevant invariants as well as to verify the partial correctness of the loop. As a case study, we demonstrate how symbol elimination in Vampire can be used as an interface for realistic imperative languages, by integrating our tool in the KeY verification system, thus allowing reasoning about loops in Java programs in a fully automated way, without any user guidance

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    Low rank prior in single patches for non-pointwise impulse noise removal

    Get PDF

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops
    corecore