33,663 research outputs found

    Safety verification of nonlinear hybrid systems based on invariant clusters

    Get PDF
    In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient

    Coordinated Robot Navigation via Hierarchical Clustering

    Get PDF
    We introduce the use of hierarchical clustering for relaxed, deterministic coordination and control of multiple robots. Traditionally an unsupervised learning method, hierarchical clustering offers a formalism for identifying and representing spatially cohesive and segregated robot groups at different resolutions by relating the continuous space of configurations to the combinatorial space of trees. We formalize and exploit this relation, developing computationally effective reactive algorithms for navigating through the combinatorial space in concert with geometric realizations for a particular choice of hierarchical clustering method. These constructions yield computationally effective vector field planners for both hierarchically invariant as well as transitional navigation in the configuration space. We apply these methods to the centralized coordination and control of nn perfectly sensed and actuated Euclidean spheres in a dd-dimensional ambient space (for arbitrary nn and dd). Given a desired configuration supporting a desired hierarchy, we construct a hybrid controller which is quadratic in nn and algebraic in dd and prove that its execution brings all but a measure zero set of initial configurations to the desired goal with the guarantee of no collisions along the way.Comment: 29 pages, 13 figures, 8 tables, extended version of a paper in preparation for submission to a journa

    Cluster synchronization in networks of coupled non-identical dynamical systems

    Full text link
    In this paper, we study cluster synchronization in networks of coupled non-identical dynamical systems. The vertices in the same cluster have the same dynamics of uncoupled node system but the uncoupled node systems in different clusters are different. We present conditions guaranteeing cluster synchronization and investigate the relation between cluster synchronization and the unweighted graph topology. We indicate that two condition play key roles for cluster synchronization: the common inter-cluster coupling condition and the intra-cluster communication. From the latter one, we interpret the two well-known cluster synchronization schemes: self-organization and driving, by whether the edges of communication paths lie at inter or intra-cluster. By this way, we classify clusters according to whether the set of edges inter- or intra-cluster edges are removable if wanting to keep the communication between pairs of vertices in the same cluster. Also, we propose adaptive feedback algorithms on the weights of the underlying graph, which can synchronize any bi-directed networks satisfying the two conditions above. We also give several numerical examples to illustrate the theoretical results

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km ×\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter

    Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. Coalescence

    Full text link
    We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of Elab=1−160AE_{lab}=1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including Ξ\Xi's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-4He^4He and even anti-Λ4He^4_{\Lambda}He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor RHR_H when comparing the thermal production with the coalescence results.Comment: 9 pages, 8 figures and 2 tables, version accepted by PL
    • …
    corecore