2,284 research outputs found

    Inapproximability for Antiferromagnetic Spin Systems in the Tree Non-Uniqueness Region

    Full text link
    A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree D undergoes a phase transition that coincides with the statistical physics uniqueness/non-uniqueness phase transition on the infinite D-regular tree. Despite this clear picture for 2-spin systems, there is little known for multi-spin systems. We present the first analog of the above inapproximability results for multi-spin systems. The main difficulty in previous inapproximability results was analyzing the behavior of the model on random D-regular bipartite graphs, which served as the gadget in the reduction. To this end one needs to understand the moments of the partition function. Our key contribution is connecting: (i) induced matrix norms, (ii) maxima of the expectation of the partition function, and (iii) attractive fixed points of the associated tree recursions (belief propagation). The view through matrix norms allows a simple and generic analysis of the second moment for any spin system on random D-regular bipartite graphs. This yields concentration results for any spin system in which one can analyze the maxima of the first moment. The connection to fixed points of the tree recursions enables an analysis of the maxima of the first moment for specific models of interest. For k-colorings we prove that for even k, in the tree non-uniqueness region (which corresponds to k<D) it is NP-hard, unless NP=RP, to approximate the number of colorings for triangle-free D-regular graphs. Our proof extends to the antiferromagnetic Potts model, and, in fact, to every antiferromagnetic model under a mild condition

    Bipartite stable Poisson graphs on R

    Full text link
    Let red and blue points be distributed on R\mathbb{R} according to two independent Poisson processes R\mathcal{R} and B\mathcal{B} and let each red (blue) point independently be equipped with a random number of half-edges according to a probability distribution ν\nu (μ\mu). We consider translation-invariant bipartite random graphs with vertex classes defined by the point sets of R\mathcal{R} and B\mathcal{B}, respectively, generated by a scheme based on the Gale-Shapley stable marriage for perfectly matching the half-edges. Our main result is that, when all vertices have degree 2 almost surely, then the resulting graph does not contain an infinite component. The two-color model is hence qualitatively different from the one-color model, where Deijfen, Holroyd and Peres have given strong evidence that there is an infinite component. We also present simulation results for other degree distributions

    Threshold graph limits and random threshold graphs

    Full text link
    We study the limit theory of large threshold graphs and apply this to a variety of models for random threshold graphs. The results give a nice set of examples for the emerging theory of graph limits.Comment: 47 pages, 8 figure

    Percolation in invariant Poisson graphs with i.i.d. degrees

    Full text link
    Let each point of a homogeneous Poisson process in R^d independently be equipped with a random number of stubs (half-edges) according to a given probability distribution mu on the positive integers. We consider translation-invariant schemes for perfectly matching the stubs to obtain a simple graph with degree distribution mu. Leaving aside degenerate cases, we prove that for any mu there exist schemes that give only finite components as well as schemes that give infinite components. For a particular matching scheme that is a natural extension of Gale-Shapley stable marriage, we give sufficient conditions on mu for the absence and presence of infinite components

    Interlacing Families IV: Bipartite Ramanujan Graphs of All Sizes

    Full text link
    We prove that there exist bipartite Ramanujan graphs of every degree and every number of vertices. The proof is based on analyzing the expected characteristic polynomial of a union of random perfect matchings, and involves three ingredients: (1) a formula for the expected characteristic polynomial of the sum of a regular graph with a random permutation of another regular graph, (2) a proof that this expected polynomial is real rooted and that the family of polynomials considered in this sum is an interlacing family, and (3) strong bounds on the roots of the expected characteristic polynomial of a union of random perfect matchings, established using the framework of finite free convolutions we recently introduced

    On the structure of random graphs with constant rr-balls

    Get PDF
    We continue the study of the properties of graphs in which the ball of radius rr around each vertex induces a graph isomorphic to the ball of radius rr in some fixed vertex-transitive graph FF, for various choices of FF and rr. This is a natural extension of the study of regular graphs. More precisely, if FF is a vertex-transitive graph and rNr \in \mathbb{N}, we say a graph GG is {\em rr-locally FF} if the ball of radius rr around each vertex of GG induces a graph isomorphic to the graph induced by the ball of radius rr around any vertex of FF. We consider the following random graph model: for each nNn \in \mathbb{N}, we let Gn=Gn(F,r)G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, nn-vertex graphs that are rr-locally FF. We investigate the properties possessed by the random graph GnG_n with high probability, for various natural choices of FF and rr. We prove that if FF is a Cayley graph of a torsion-free group of polynomial growth, and rr is sufficiently large depending on FF, then the random graph Gn=Gn(F,r)G_n = G_n(F,r) has largest component of order at most n5/6n^{5/6} with high probability, and has at least exp(nδ)\exp(n^{\delta}) automorphisms with high probability, where δ>0\delta>0 depends upon FF alone. Both properties are in stark contrast to random dd-regular graphs, which correspond to the case where FF is the infinite dd-regular tree. We also show that, under the same hypotheses, the number of unlabelled, nn-vertex graphs that are rr-locally FF grows like a stretched exponential in nn, again in contrast with dd-regular graphs. In the case where FF is the standard Cayley graph of Zd\mathbb{Z}^d, we obtain a much more precise enumeration result, and more precise results on the properties of the random graph Gn(F,r)G_n(F,r). Our proofs use a mixture of results and techniques from geometry, group theory and combinatorics.Comment: Minor changes. 57 page

    Independence ratio and random eigenvectors in transitive graphs

    Get PDF
    A theorem of Hoffman gives an upper bound on the independence ratio of regular graphs in terms of the minimum λmin\lambda_{\min} of the spectrum of the adjacency matrix. To complement this result we use random eigenvectors to gain lower bounds in the vertex-transitive case. For example, we prove that the independence ratio of a 33-regular transitive graph is at least q=1234πarccos(1λmin4).q=\frac{1}{2}-\frac{3}{4\pi}\arccos\biggl(\frac{1-\lambda _{\min}}{4}\biggr). The same bound holds for infinite transitive graphs: we construct factor of i.i.d. independent sets for which the probability that any given vertex is in the set is at least qo(1)q-o(1). We also show that the set of the distributions of factor of i.i.d. processes is not closed w.r.t. the weak topology provided that the spectrum of the graph is uncountable.Comment: Published at http://dx.doi.org/10.1214/14-AOP952 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore