1,914 research outputs found

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    Time-causal and time-recursive spatio-temporal receptive fields

    Get PDF
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, based on a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about (i) parameterizing the intermediate temporal scale levels, (ii) analysing the resulting temporal dynamics, (iii) transferring the theory to a discrete implementation, (iv) computing scale-normalized spatio-temporal derivative expressions for spatio-temporal feature detection and (v) computational modelling of receptive fields in the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) in biological vision. We show that by distributing the intermediate temporal scale levels according to a logarithmic distribution, we obtain much faster temporal response properties (shorter temporal delays) compared to a uniform distribution. Specifically, these kernels converge very rapidly to a limit kernel possessing true self-similar scale-invariant properties over temporal scales, thereby allowing for true scale invariance over variations in the temporal scale, although the underlying temporal scale-space representation is based on a discretized temporal scale parameter. We show how scale-normalized temporal derivatives can be defined for these time-causal scale-space kernels and how the composed theory can be used for computing basic types of scale-normalized spatio-temporal derivative expressions in a computationally efficient manner.Comment: 39 pages, 12 figures, 5 tables in Journal of Mathematical Imaging and Vision, published online Dec 201

    Learning with Algebraic Invariances, and the Invariant Kernel Trick

    Get PDF
    When solving data analysis problems it is important to integrate prior knowledge and/or structural invariances. This paper contributes by a novel framework for incorporating algebraic invariance structure into kernels. In particular, we show that algebraic properties such as sign symmetries in data, phase independence, scaling etc. can be included easily by essentially performing the kernel trick twice. We demonstrate the usefulness of our theory in simulations on selected applications such as sign-invariant spectral clustering and underdetermined ICA

    Support Vector Machines in High Energy Physics

    Get PDF
    This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case. The kernel trick will be introduced and in the context of structural risk minimization, large margin algorithms for classification and regression will be presented. Current applications in high energy physics will be discussed.Comment: 11 pages, 12 figures. Part of the proceedings of the Track 'Computational Intelligence for HEP Data Analysis' at iCSC 200

    New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3)

    Get PDF
    We consider hypo-elliptic diffusion and convection-diffusion on R3â‹ŠS2\mathbb{R}^3 \rtimes S^2, the quotient of the Lie group of rigid body motions SE(3) in which group elements are equivalent if they are equal up to a rotation around the reference axis. We show that we can derive expressions for the convolution kernels in terms of eigenfunctions of the PDE, by extending the approach for the SE(2) case. This goes via application of the Fourier transform of the PDE in the spatial variables, yielding a second order differential operator. We show that the eigenfunctions of this operator can be expressed as (generalized) spheroidal wave functions. The same exact formulas are derived via the Fourier transform on SE(3). We solve both the evolution itself, as well as the time-integrated process that corresponds to the resolvent operator. Furthermore, we have extended a standard numerical procedure from SE(2) to SE(3) for the computation of the solution kernels that is directly related to the exact solutions. Finally, we provide a novel analytic approximation of the kernels that we briefly compare to the exact kernels.Comment: Revised and restructure

    On Invariance, Equivariance, Correlation and Convolution of Spherical Harmonic Representations for Scalar and Vectorial Data

    Full text link
    The mathematical representations of data in the Spherical Harmonic (SH) domain has recently regained increasing interest in the machine learning community. This technical report gives an in-depth introduction to the theoretical foundation and practical implementation of SH representations, summarizing works on rotation invariant and equivariant features, as well as convolutions and exact correlations of signals on spheres. In extension, these methods are then generalized from scalar SH representations to Vectorial Harmonics (VH), providing the same capabilities for 3d vector fields on spheresComment: 106 pages, tech repor

    Learning with group invariant features: A Kernel perspective

    Get PDF
    We analyze in this paper a random feature map based on a theory of invariance (I-theory) introduced in [1]. More specifically, a group invariant signal signature is obtained through cumulative distributions of group-transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar-integration kernel that is invariant to the specified group action. We show how this non-linear random feature map approximates this group invariant kernel uniformly on a set of N points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting
    • …
    corecore