4,029 research outputs found

    Statistical properties of Lorenz like flows, recent developments and perspectives

    Full text link
    We comment on mathematical results about the statistical behavior of Lorenz equations an its attractor, and more generally to the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statisitcal behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated to the existence of physical measures: \emph{in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure}. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors.Comment: 40 pages; 10 figures; Keywords: sensitive dependence on initial conditions, physical measure, singular-hyperbolicity, expansiveness, robust attractor, robust chaotic flow, positive Lyapunov exponent, large deviations, hitting and recurrence times. Minor typos corrected and precise acknowledgments of financial support added. To appear in Int J of Bif and Chaos in App Sciences and Engineerin
    corecore