2,252 research outputs found

    Intuitive and interpretable visual communication of a complex statistical model of disease progression and risk

    Get PDF
    Computer science and machine learning in particular are increasingly lauded for their potential to aid medical practice. However, the highly technical nature of the state of the art techniques can be a major obstacle in their usability by health care professionals and thus, their adoption and actual practical benefit. In this paper we describe a software tool which focuses on the visualization of predictions made by a recently developed method which leverages data in the form of large scale electronic records for making diagnostic predictions. Guided by risk predictions, our tool allows the user to explore interactively different diagnostic trajectories,or display cumulative long term prognostics, in an intuitive and easily interpretable manner.Postprin

    DPVis: Visual Analytics with Hidden Markov Models for Disease Progression Pathways

    Full text link
    Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this study, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.Comment: to appear at IEEE Transactions on Visualization and Computer Graphic

    A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is the most common type of dementia. Its diagnosis and progression detection have been intensively studied. Nevertheless, research studies often have little effect on clinical practice mainly due to the following reasons: (1) Most studies depend mainly on a single modality, especially neuroimaging; (2) diagnosis and progression detection are usually studied separately as two independent problems; and (3) current studies concentrate mainly on optimizing the performance of complex machine learning models, while disregarding their explainability. As a result, physicians struggle to interpret these models, and feel it is hard to trust them. In this paper, we carefully develop an accurate and interpretable AD diagnosis and progression detection model. This model provides physicians with accurate decisions along with a set of explanations for every decision. Specifically, the model integrates 11 modalities of 1048 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) real-world dataset: 294 cognitively normal, 254 stable mild cognitive impairment (MCI), 232 progressive MCI, and 268 AD. It is actually a two-layer model with random forest (RF) as classifier algorithm. In the first layer, the model carries out a multi-class classification for the early diagnosis of AD patients. In the second layer, the model applies binary classification to detect possible MCI-to-AD progression within three years from a baseline diagnosis. The performance of the model is optimized with key markers selected from a large set of biological and clinical measures. Regarding explainability, we provide, for each layer, global and instance-based explanations of the RF classifier by using the SHapley Additive exPlanations (SHAP) feature attribution framework. In addition, we implement 22 explainers based on decision trees and fuzzy rule-based systems to provide complementary justifications for every RF decision in each layer. Furthermore, these explanations are represented in natural language form to help physicians understand the predictions. The designed model achieves a cross-validation accuracy of 93.95% and an F1-score of 93.94% in the first layer, while it achieves a cross-validation accuracy of 87.08% and an F1-Score of 87.09% in the second layer. The resulting system is not only accurate, but also trustworthy, accountable, and medically applicable, thanks to the provided explanations which are broadly consistent with each other and with the AD medical literature. The proposed system can help to enhance the clinical understanding of AD diagnosis and progression processes by providing detailed insights into the effect of different modalities on the disease riskThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)-NRF-2020R1A2B5B02002478). In addition, Dr. Jose M. Alonso is Ramon y Cajal Researcher (RYC-2016-19802), and its research is supported by the Spanish Ministry of Science, Innovation and Universities (grants RTI2018-099646-B-I00, TIN2017-84796-C2-1-R, TIN2017-90773-REDT, and RED2018-102641-T) and the Galician Ministry of Education, University and Professional Training (grants ED431F 2018/02, ED431C 2018/29, ED431G/08, and ED431G2019/04), with all grants co-funded by the European Regional Development Fund (ERDF/FEDER program)S

    Leveraging Historical Medical Records as a Proxy via Multimodal Modeling and Visualization to Enrich Medical Diagnostic Learning

    Full text link
    Simulation-based Medical Education (SBME) has been developed as a cost-effective means of enhancing the diagnostic skills of novice physicians and interns, thereby mitigating the need for resource-intensive mentor-apprentice training. However, feedback provided in most SBME is often directed towards improving the operational proficiency of learners, rather than providing summative medical diagnoses that result from experience and time. Additionally, the multimodal nature of medical data during diagnosis poses significant challenges for interns and novice physicians, including the tendency to overlook or over-rely on data from certain modalities, and difficulties in comprehending potential associations between modalities. To address these challenges, we present DiagnosisAssistant, a visual analytics system that leverages historical medical records as a proxy for multimodal modeling and visualization to enhance the learning experience of interns and novice physicians. The system employs elaborately designed visualizations to explore different modality data, offer diagnostic interpretive hints based on the constructed model, and enable comparative analyses of specific patients. Our approach is validated through two case studies and expert interviews, demonstrating its effectiveness in enhancing medical training.Comment: Accepted by IEEE VIS 202

    Risk assessment for progression of Diabetic Nephropathy based on patient history analysis

    Get PDF
    A nefropatia diabética (ND) é uma das complicações mais comuns em doentes com diabetes. Trata-se de uma doença crónica que afeta progressivamente os rins, podendo resultar numa insuficiência renal. A digitalização permitiu aos hospitais armazenar as informações dos doentes em registos de saúde eletrónicos (RSE). A aplicação de algoritmos de Machine Learning (ML) a estes dados pode permitir a previsão do risco na evolução destes doentes, conduzindo a uma melhor gestão da doença. O principal objetivo deste trabalho é criar um modelo preditivo que tire partido do historial do doente presente nos RSE. Foi aplicado neste trabalho o maior conjunto de dados de doentes portugueses com DN, seguidos durante 22 anos pela Associação Protetora dos Diabéticos de Portugal (APDP). Foi desenvolvida uma abordagem longitudinal na fase de pré-processamento de dados, permitindo que estes fossem servidos como entrada para dezasseis algoritmos de ML distintos. Após a avaliação e análise dos respetivos resultados, o Light Gradient Boosting Machine foi identificado como o melhor modelo, apresentando boas capacidades de previsão. Esta conclusão foi apoiada não só pela avaliação de várias métricas de classificação em dados de treino, teste e validação, mas também pela avaliação do seu desempenho por cada estádio da doença. Para além disso, os modelos foram analisados utilizando gráficos de feature ranking e através de análise estatística. Como complemento, são ainda apresentados a interpretabilidade dos resultados através do método SHAP, assim como a distribuição do modelo utilizando o Gradio e os servidores da Hugging Face. Através da integração de técnicas ML, de um método de interpretação e de uma aplicação Web que fornece acesso ao modelo, este estudo oferece uma abordagem potencialmente eficaz para antecipar a evolução da ND, permitindo que os profissionais de saúde tomem decisões informadas para a prestação de cuidados personalizados e gestão da doença

    A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom

    Full text link
    Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore