52,331 research outputs found

    Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

    Get PDF
    Automated planning is one of the foundational areas of AI. Since no single planner can work well for all tasks and domains, portfolio-based techniques have become increasingly popular in recent years. In particular, deep learning emerges as a promising methodology for online planner selection. Owing to the recent development of structural graph representations of planning tasks, we propose a graph neural network (GNN) approach to selecting candidate planners. GNNs are advantageous over a straightforward alternative, the convolutional neural networks, in that they are invariant to node permutations and that they incorporate node labels for better inference. Additionally, for cost-optimal planning, we propose a two-stage adaptive scheduling method to further improve the likelihood that a given task is solved in time. The scheduler may switch at halftime to a different planner, conditioned on the observed performance of the first one. Experimental results validate the effectiveness of the proposed method against strong baselines, both deep learning and non-deep learning based. The code is available at \url{https://github.com/matenure/GNN_planner}.Comment: AAAI 2020. Code is released at https://github.com/matenure/GNN_planner. Data set is released at https://github.com/IBM/IPC-graph-dat

    Rawlsian Individuals: Justice, Experiments, and Complexity

    Get PDF
    John Rawls’s A Theory of Justice is examined from the perspective of experimental methods in economics and complex adaptive systems simulations. This paper first discusses the justice principle selection process in Rawls’s representation of it as a hypothetical experiment. This hypothetical experiment fails to satisfy reasonable experimental controls, particularly as reflects the conception of the individual it employs. The second section of the paper discusses the differences between Rawls’s two conceptions of rational persons associated with his distinction between thin and full theories of the good. The third section uses his fuller conception of rational persons, life plans, and psychological laws in the third part of the book to offer an alternative view of the selection process understood as a complex adaptive system. The fourth section turns to a topic raised by this complex system approach, the status of normative reasoning in political-economic systems. The fifth section summarizes

    Building machines that learn and think about morality

    Get PDF
    Lake et al. propose three criteria which, they argue, will bring artificial intelligence (AI) systems closer to human cognitive abilities. In this paper, we explore the application of these criteria to a particular domain of human cognition: our capacity for moral reasoning. In doing so, we explore a set of considerations relevant to the development of AI moral decision-making. Our main focus is on the relation between dual-process accounts of moral reasoning and model-free/model-based forms of machine learning. We also discuss how work in embodied and situated cognition could provide a valu- able perspective on future research

    Towards a theory of heuristic and optimal planning for sequential information search

    No full text

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page
    • …
    corecore