19 research outputs found

    A gaze-contingent framework for perceptually-enabled applications in healthcare

    Get PDF
    Patient safety and quality of care remain the focus of the smart operating room of the future. Some of the most influential factors with a detrimental effect are related to suboptimal communication among the staff, poor flow of information, staff workload and fatigue, ergonomics and sterility in the operating room. While technological developments constantly transform the operating room layout and the interaction between surgical staff and machinery, a vast array of opportunities arise for the design of systems and approaches, that can enhance patient safety and improve workflow and efficiency. The aim of this research is to develop a real-time gaze-contingent framework towards a "smart" operating suite, that will enhance operator's ergonomics by allowing perceptually-enabled, touchless and natural interaction with the environment. The main feature of the proposed framework is the ability to acquire and utilise the plethora of information provided by the human visual system to allow touchless interaction with medical devices in the operating room. In this thesis, a gaze-guided robotic scrub nurse, a gaze-controlled robotised flexible endoscope and a gaze-guided assistive robotic system are proposed. Firstly, the gaze-guided robotic scrub nurse is presented; surgical teams performed a simulated surgical task with the assistance of a robot scrub nurse, which complements the human scrub nurse in delivery of surgical instruments, following gaze selection by the surgeon. Then, the gaze-controlled robotised flexible endoscope is introduced; experienced endoscopists and novice users performed a simulated examination of the upper gastrointestinal tract using predominately their natural gaze. Finally, a gaze-guided assistive robotic system is presented, which aims to facilitate activities of daily living. The results of this work provide valuable insights into the feasibility of integrating the developed gaze-contingent framework into clinical practice without significant workflow disruptions.Open Acces

    A generic scope actuation system for flexible endoscopes

    Get PDF
    Background: A scope actuation system assists a surgeon in steering a scope for navigating an operative field during an interventional or diagnostic procedure. Each system is tailored for a specific surgical procedure. The development of a generic scope actuation system could assist various laparoscopic and endoscopic procedures. This has the potential to reduce the deployment and maintenance costs for a hospital, making it more accessible for clinical usage. Methods: A modular actuation system (for maneuvering rigid laparoscopes) was adapted to enable incorporation of flexible endoscopes. The design simplifies the installation and disassembly processes. User studies were conducted to assess the ability of the system to focus onto a diagnostic area, and to navigate during a simulated esophagogastroduodenoscopy procedure. During the studies, the endoscope was maneuvered with (robotic mode) and without (manual mode) the actuation system to navigate the endoscope’s focus on a predefined track. Results: Results show that the robotic mode performed better than the manual mode on all the measured performance parameters including (a) the total duration to traverse a track, (b) the percentage of time spent outside a track while traversing, and (c) the number of times the scope focus shifts outside the track. Additionally, robotic mode also reduced the perceived workload based on the NASA-TLX scale. Conclusions: The proposed scope actuation system enhances the maneuverability of flexible endoscopes. It also lays the groundwork for future development of modular and generic scope assistant systems that can be used in both laparoscopic and endoscopic procedures

    Scope actuation system for articulated laparoscopes

    Get PDF
    Background: An articulated laparoscope comprises a rigid shaft with an articulated distal end to change the viewing direction. The articulation provides improved navigation of the operating field in confined spaces. Furthermore, incorporation of an actuation system tends to enhance the control of an articulated laparoscope. Methods: A preliminary prototype of a scope actuation system to maneuver an off-the-shelf articulated laparoscope (EndoCAMaleon by Karl Storz, Germany) was developed. A user study was conducted to evaluate this prototype for the surgical paradigm of video-assisted thoracic surgery. In the study, the subjects maneuvered an articulated scope under two modes of operation: (a) actuated mode where an operating surgeon maneuvers the scope using the developed prototype and (b) manual mode where a surgical assistant directly maneuvers the scope. The actuated mode was further assessed for multiple configurations based on the orientation of the articulated scope at the incision. Results: The data show the actuated mode scored better than the manual mode on all the measured performance parameters including (a) total duration to visualize a marked region, (a) duration for which scope focus shifts outside a predefined visualization region, and (c) number of times for which scope focus shifts outside a predefined visualization region. Among the different configurations tested using the actuated mode, no significant difference was observed. Conclusions: The proposed articulated scope actuation system facilitates better navigation of an operative field as compared to a human assistant. Secondly, irrespective of the orientation in which an articulated scope’s shaft is inserted through an incision, the proposed actuation system can navigate and visualize the operative field

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Smart Camera Robotic Assistant for Laparoscopic Surgery

    Get PDF
    The cognitive architecture also includes learning mechanisms to adapt the behavior of the robot to the different ways of working of surgeons, and to improve the robot behavior through experience, in a similar way as a human assistant would do. The theoretical concepts of this dissertation have been validated both through in-vitro experimentation in the labs of medical robotics of the University of Malaga and through in-vivo experimentation with pigs in the IACE Center (Instituto Andaluz de Cirugía Experimental), performed by expert surgeons.In the last decades, laparoscopic surgery has become a daily practice in operating rooms worldwide, which evolution is tending towards less invasive techniques. In this scenario, robotics has found a wide field of application, from slave robotic systems that replicate the movements of the surgeon to autonomous robots able to assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. However, these systems require the direct supervision of the surgeon, and its capacity of making decisions and adapting to dynamic environments is very limited. This PhD dissertation presents the design and implementation of a smart camera robotic assistant to collaborate with the surgeon in a real surgical environment. First, it presents the design of a novel camera robotic assistant able to augment the capacities of current vision systems. This robotic assistant is based on an intra-abdominal camera robot, which is completely inserted into the patient’s abdomen and it can be freely moved along the abdominal cavity by means of magnetic interaction with an external magnet. To provide the camera with the autonomy of motion, the external magnet is coupled to the end effector of a robotic arm, which controls the shift of the camera robot along the abdominal wall. This way, the robotic assistant proposed in this dissertation has six degrees of freedom, which allow providing a wider field of view compared to the traditional vision systems, and also to have different perspectives of the operating area. On the other hand, the intelligence of the system is based on a cognitive architecture specially designed for autonomous collaboration with the surgeon in real surgical environments. The proposed architecture simulates the behavior of a human assistant, with a natural and intuitive human-robot interface for the communication between the robot and the surgeon

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Recent Advances in Laparoscopic Surgery

    Get PDF
    The implementation of laparoscopy has revolutionized surgery over the past few years, incorporating significant benefits for the patient. However, this evolution has also entailed many technical obstacles for surgeons. This book is for readers wanting to learn more about recent surgical techniques and technologies. Topics cover novel sophisticated approaches for single-site surgery, natural orifice transluminal endoscopic surgery, and transanal surgery, among others. Also included are reviews of new innovative surgical devices, robotic platforms, and methodological guidelines for improving surgical performance and surgeon ergonomics
    corecore