222 research outputs found

    (R1976) A Novel Approach to Solve Fuzzy Rough Matrix Game with Two Players

    Get PDF
    This paper proposes a new method for solving a two-person zero-sum fuzzy matrix game with goals, payoffs, and decision variables represented as triangular fuzzy rough numbers. We created a pair of fully fuzzy rough linear programming problems for players. Triangular fuzzy rough numbers can be used to formulate two fuzzy linear programming problems for the first player in the form of upper approximation intervals and lower approximation intervals. Two problems for the second player can be created in the same way. These problems have been split into five sub-crisp problems for the player first and five sub-crisp problems for the player second. The solution to the game can be obtained by solving these ten fuzzy linear programming problems. To demonstrate the method, a numerical example is provided. Using Wolfram Cloud, optimal strategies and game values are calculated for various parameters. Sensitivity analysis is carried out by altering the values of parameters

    A method to solve two-player zero-sum matrix games in chaotic environment

    Get PDF
    This research article proposes a method for solving the two-player zero-sum matrix games in chaotic environment. In a fast growing world, the real life situations are characterized by their chaotic behaviors and chaotic processes. The chaos variables are defined to study such type of problems. Classical mathematics deals with the numbers as static and less value-added, while the chaos mathematics deals with it as dynamic evolutionary, and comparatively more value-added. In this research article, the payoff is characterized by chaos numbers. While the chaos payoff matrix converted into the corresponding static payoff matrix. An approach for determining the chaotic optimal strategy is developed. In the last, one solved example is provided to explain the utility, effectiveness and applicability of the approach for the problem.Abbreviations: DM= Decision Maker; MCDM = Multiple Criteria Decision Making; LPP = Linear Programming Problem; GAMS= General Algebraic Modeling System

    A comprehensive review of hybrid game theory techniques and multi-criteria decision-making methods

    Get PDF
    More studies trend to hybrid the game theory technique with the multi-criteria decision-making (MCDM) method to aid real-life problems. This paper provides a comprehensive review of the hybrid game theory technique and MCDM method. The fundamentals of game theory concepts and models are explained to make game theory principles clear to the readers. Moreover, the definitions and models are elaborated and classified to the static game, dynamic game, cooperative game and evolutionary game. Therefore, the hybrid game theory technique and MCDM method are reviewed and numerous applications studied from the past works of literature are highlighted. The result of the previous studies shows that the fundamental elements for both frameworks were studied in various ways with most of the past studies tend to integrate the static game with AHP and TOPSIS methods. Also, the integration of game theory techniques and MCDM methods was studied in various applications such as politics, economy, supply chain, engineering, water management problem, allocation problem and telecommunication network selection. The main contribution of the recent studies of employment between game theory technique and MCDM method are analyzed and discussed in detail which includes static and dynamic games in the non-cooperative game, cooperative game, both non-cooperative and cooperative games and evolutionary gam

    Fuzzy linear programming problems : models and solutions

    No full text
    We investigate various types of fuzzy linear programming problems based on models and solution methods. First, we review fuzzy linear programming problems with fuzzy decision variables and fuzzy linear programming problems with fuzzy parameters (fuzzy numbers in the definition of the objective function or constraints) along with the associated duality results. Then, we review the fully fuzzy linear programming problems with all variables and parameters being allowed to be fuzzy. Most methods used for solving such problems are based on ranking functions, alpha-cuts, using duality results or penalty functions. In these methods, authors deal with crisp formulations of the fuzzy problems. Recently, some heuristic algorithms have also been proposed. In these methods, some authors solve the fuzzy problem directly, while others solve the crisp problems approximately

    Full Issue

    Get PDF

    Nash Equilibrium Strategies in Fuzzy Games

    Get PDF

    Quadruple Neutrosophic Theory And Applications Volume I

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Smarandache introduce for the first time the neutrosophic quadruple numbers (of the form + + + ) and the refined neutrosophic quadruple numbers

    INTRODUCTION TO NEUTROSOPHIC MEASURE, NEUTROSOPHIC INTEGRAL, AND NEUTROSOPHIC PROBABILITY

    Get PDF
    Neutrosophic Science means development and applications of neutrosophic logic/set/measure/integral/probability etc. and their applications in any field

    Soft Computing

    Get PDF
    Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering
    corecore