240 research outputs found

    AN EXTENDED SINGLE-VALUED NEUTROSOPHIC AHP AND MULTIMOORA METHOD TO EVALUATE THE OPTIMAL TRAINING AIRCRAFT FOR FLIGHT TRAINING ORGANIZATIONS

    Get PDF
    Aircraft’s training is crucial for a flight training organization (FTO). Therefore, an important decision that these organizations should wisely consider the choice of aircraft to be bought among many alternatives. The criteria for evaluating the optimal training aircraft for FTOs are collected based on the survey approach. Single valued neutrosophic sets (SVNS) have the degree of truth, indeterminacy, and falsity membership functions and, as a special case, neutrosophic sets (NS) deal with inconsistent environments. In this regard, this study has extended a single-valued neutrosophic analytic hierarchy process (AHP) based on multi-objective optimization on the basis of ratio analysis plus a full multiplicative form (MULTIMOORA) to rank the training aircraft as the alternatives. Moreover, a sensitivity analysis is performed to demonstrate the stability of the developed method. Finally, a comparison between the results of the developed approach and the existing approaches for validating the developed approach is discussed. This analysis shows that the proposed approach is efficient and with the other methods

    Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach

    Get PDF
    [EN] Fuzzy analytic hierarchy process (FAHP) methodologies have witnessed a growing development from the late 1980s until now, and countless FAHP based applications have been published in many fields including economics, finance, environment or engineering. In this context, the FAHP methodologies have been generally restricted to fuzzy numbers with linear type of membership functions (triangular numbers-TN-and trapezoidal numbers-TrN). This paper proposes an extended FAHP model (E-FAHP) where pairwise fuzzy comparison matrices are represented by a special type of fuzzy numbers referred to as (m,n)-trapezoidal numbers (TrN (m,n)) with nonlinear membership functions. It is then demonstrated that there are a significant number of FAHP approaches that can be reduced to the proposed E-FAHP structure. A comparative analysis of E-FAHP and Mikhailov's model is illustrated with a case study showing that E-FAHP includes linear and nonlinear fuzzy numbers.Reig-Mullor, J.; Pla Santamaría, D.; Garcia-Bernabeu, A. (2020). Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach. Mathematics. 8(11):1-14. https://doi.org/10.3390/math8112014S114811Chai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. doi:10.1016/j.eswa.2012.12.040Tavana, M., Zareinejad, M., Di Caprio, D., & Kaviani, M. A. (2016). An integrated intuitionistic fuzzy AHP and SWOT method for outsourcing reverse logistics. Applied Soft Computing, 40, 544-557. doi:10.1016/j.asoc.2015.12.005Medasani, S., Kim, J., & Krishnapuram, R. (1998). An overview of membership function generation techniques for pattern recognition. International Journal of Approximate Reasoning, 19(3-4), 391-417. doi:10.1016/s0888-613x(98)10017-8Medaglia, A. L., Fang, S.-C., Nuttle, H. L. W., & Wilson, J. R. (2002). An efficient and flexible mechanism for constructing membership functions. European Journal of Operational Research, 139(1), 84-95. doi:10.1016/s0377-2217(01)00157-6Mikhailov, L. (2003). Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets and Systems, 134(3), 365-385. doi:10.1016/s0165-0114(02)00383-4Appadoo, S. S. (2014). Possibilistic Fuzzy Net Present Value Model and Application. Mathematical Problems in Engineering, 2014, 1-11. doi:10.1155/2014/865968Mikhailov, L., & Tsvetinov, P. (2004). Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing, 5(1), 23-33. doi:10.1016/j.asoc.2004.04.001Hepu Deng. (1999). Multicriteria analysis with fuzzy pairwise comparison. FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315). doi:10.1109/fuzzy.1999.793038Van Laarhoven, P. J. M., & Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11(1-3), 229-241. doi:10.1016/s0165-0114(83)80082-7Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. doi:10.1016/0165-0114(85)90090-9Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. doi:10.1016/0377-2217(95)00300-2Enea, M., & Piazza, T. (2004). Project Selection by Constrained Fuzzy AHP. Fuzzy Optimization and Decision Making, 3(1), 39-62. doi:10.1023/b:fodm.0000013071.63614.3dKrejčí, J., Pavlačka, O., & Talašová, J. (2016). A fuzzy extension of Analytic Hierarchy Process based on the constrained fuzzy arithmetic. Fuzzy Optimization and Decision Making, 16(1), 89-110. doi:10.1007/s10700-016-9241-0Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367-1378. doi:10.1016/j.eswa.2007.08.041Isaai, M. T., Kanani, A., Tootoonchi, M., & Afzali, H. R. (2011). Intelligent timetable evaluation using fuzzy AHP. Expert Systems with Applications, 38(4), 3718-3723. doi:10.1016/j.eswa.2010.09.030Büyüközkan, G., & Güleryüz, S. (2016). A new integrated intuitionistic fuzzy group decision making approach for product development partner selection. Computers & Industrial Engineering, 102, 383-395. doi:10.1016/j.cie.2016.05.038Zheng, G., Zhu, N., Tian, Z., Chen, Y., & Sun, B. (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety Science, 50(2), 228-239. doi:10.1016/j.ssci.2011.08.042Calabrese, A., Costa, R., & Menichini, T. (2013). Using Fuzzy AHP to manage Intellectual Capital assets: An application to the ICT service industry. Expert Systems with Applications, 40(9), 3747-3755. doi:10.1016/j.eswa.2012.12.081Ishizaka, A., & Nguyen, N. H. (2013). Calibrated fuzzy AHP for current bank account selection. Expert Systems with Applications, 40(9), 3775-3783. doi:10.1016/j.eswa.2012.12.089Somsuk, N., & Laosirihongthong, T. (2014). A fuzzy AHP to prioritize enabling factors for strategic management of university business incubators: Resource-based view. Technological Forecasting and Social Change, 85, 198-210. doi:10.1016/j.techfore.2013.08.007Chan, H. K., Wang, X., & Raffoni, A. (2014). An integrated approach for green design: Life-cycle, fuzzy AHP and environmental management accounting. The British Accounting Review, 46(4), 344-360. doi:10.1016/j.bar.2014.10.004Tan, R. R., Aviso, K. B., Huelgas, A. P., & Promentilla, M. A. B. (2014). Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. Process Safety and Environmental Protection, 92(5), 467-475. doi:10.1016/j.psep.2013.11.005Rezaei, J., Fahim, P. B. M., & Tavasszy, L. (2014). Supplier selection in the airline retail industry using a funnel methodology: Conjunctive screening method and fuzzy AHP. Expert Systems with Applications, 41(18), 8165-8179. doi:10.1016/j.eswa.2014.07.005Song, Z., Zhu, H., Jia, G., & He, C. (2014). Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. Journal of Loss Prevention in the Process Industries, 32, 78-94. doi:10.1016/j.jlp.2014.08.002Dong, M., Li, S., & Zhang, H. (2015). Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP. Expert Systems with Applications, 42(21), 7846-7857. doi:10.1016/j.eswa.2015.06.007Mangla, S. K., Kumar, P., & Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study. Resources, Conservation and Recycling, 104, 375-390. doi:10.1016/j.resconrec.2015.01.001Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfenderesk, H. (2015). Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 49, 54-65. doi:10.1016/j.compenvurbsys.2014.10.001Lupo, T. (2016). A fuzzy framework to evaluate service quality in the healthcare industry: An empirical case of public hospital service evaluation in Sicily. Applied Soft Computing, 40, 468-478. doi:10.1016/j.asoc.2015.12.010Tuljak-Suban, D., & Bajec, P. (2018). The Influence of Defuzzification Methods to Decision Support Systems Based on Fuzzy AHP with Scattered Comparison Matrix: Application to 3PLP Selection as a Case Study. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26(03), 475-491. doi:10.1142/s021848851850023xAkbar, M. A., Shameem, M., Mahmood, S., Alsanad, A., & Gumaei, A. (2020). Prioritization based Taxonomy of Cloud-based Outsource Software Development Challenges: Fuzzy AHP analysis. Applied Soft Computing, 95, 106557. doi:10.1016/j.asoc.2020.106557Jung, H. (2011). A fuzzy AHP–GP approach for integrated production-planning considering manufacturing partners. Expert Systems with Applications, 38(5), 5833-5840. doi:10.1016/j.eswa.2010.11.039Shaw, K., Shankar, R., Yadav, S. S., & Thakur, L. S. (2012). Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain. Expert Systems with Applications, 39(9), 8182-8192. doi:10.1016/j.eswa.2012.01.149Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021Akkaya, G., Turanoğlu, B., & Öztaş, S. (2015). An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industrial engineering sector choosing. Expert Systems with Applications, 42(24), 9565-9573. doi:10.1016/j.eswa.2015.07.061Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. doi:10.1016/j.eswa.2011.08.061Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105-116. doi:10.1016/j.asoc.2014.01.003Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693. doi:10.1016/j.eswa.2013.07.093Sun, L., Ma, J., Zhang, Y., Dong, H., & Hussain, F. K. (2016). Cloud-FuSeR: Fuzzy ontology and MCDM based cloud service selection. Future Generation Computer Systems, 57, 42-55. doi:10.1016/j.future.2015.11.025Ar, I. M., Erol, I., Peker, I., Ozdemir, A. I., Medeni, T. D., & Medeni, I. T. (2020). Evaluating the feasibility of blockchain in logistics operations: A decision framework. Expert Systems with Applications, 158, 113543. doi:10.1016/j.eswa.2020.113543Yalcin, N., Bayrakdaroglu, A., & Kahraman, C. (2012). Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. Expert Systems with Applications, 39(1), 350-364. doi:10.1016/j.eswa.2011.07.024Chang, S.-C., Tsai, P.-H., & Chang, S.-C. (2015). A hybrid fuzzy model for selecting and evaluating the e-book business model: A case study on Taiwan e-book firms. Applied Soft Computing, 34, 194-204. doi:10.1016/j.asoc.2015.05.011Li, N., & Zhao, H. (2016). Performance evaluation of eco-industrial thermal power plants by using fuzzy GRA-VIKOR and combination weighting techniques. Journal of Cleaner Production, 135, 169-183. doi:10.1016/j.jclepro.2016.06.113Mandic, K., Delibasic, B., Knezevic, S., & Benkovic, S. (2014). Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods. Economic Modelling, 43, 30-37. doi:10.1016/j.econmod.2014.07.036Li, Y., Liu, X., & Chen, Y. (2012). Supplier selection using axiomatic fuzzy set and TOPSIS methodology in supply chain management. Fuzzy Optimization and Decision Making, 11(2), 147-176. doi:10.1007/s10700-012-9117-xKaya, Ö., Alemdar, K. D., & Çodur, M. Y. (2020). A novel two stage approach for electric taxis charging station site selection. Sustainable Cities and Society, 62, 102396. doi:10.1016/j.scs.2020.102396Chen, J.-F., Hsieh, H.-N., & Do, Q. H. (2015). Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Applied Soft Computing, 28, 100-108. doi:10.1016/j.asoc.2014.11.050Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39(1), 960-966. doi:10.1016/j.eswa.2011.07.095Che, Z. H., Wang, H. S., & Chuang, C.-L. (2010). A fuzzy AHP and DEA approach for making bank loan decisions for small and medium enterprises in Taiwan. Expert Systems with Applications, 37(10), 7189-7199. doi:10.1016/j.eswa.2010.04.010Krejčí, J. (2015). Additively reciprocal fuzzy pairwise comparison matrices and multiplicative fuzzy priorities. Soft Computing, 21(12), 3177-3192. doi:10.1007/s00500-015-2000-2Xu, Z., & Liao, H. (2014). Intuitionistic Fuzzy Analytic Hierarchy Process. IEEE Transactions on Fuzzy Systems, 22(4), 749-761. doi:10.1109/tfuzz.2013.2272585Mikhailov, L. (2000). A fuzzy programming method for deriving priorities in the analytic hierarchy process. Journal of the Operational Research Society, 51(3), 341-349. doi:10.1057/palgrave.jors.260089

    Multicriteria Decision Making in Sustainable Tourism and Low-Carbon Tourism Research: A Systematic Literature Review

    Get PDF
    Multicriteria Decision Making (MCDM) is increasingly being utilized as an analytical research tool for sectors that require decision-making with specific objectives and constraints, such as the tourism industry. Sustainable tourism, which examines the balance of numerous aspects, including stakeholders’ interests, is the critical feature propelling the increased usage of MCDM. This paper explores the use of Multicriteria Decision Making (MCDM) methods applied in studies of sustainable tourism and its derivative term, low-carbon tourism, using a systematic literature review (SLR) search from the Scopus database. The analysis has identified 189 relevant studies published between 1987 to April 2022. After selection, screening, and synthesizing processes, we selected 135 pertinent studies, which were analysed in general descriptive data, citation impacts, geographical categorization, categorization of the methodologies’ objectives, and possible trajectories of similar research in the future. We find that highly cited authors and articles are related to sustainable tourism indicators\u27 development and case studies. Furthermore, most relevant studies are concentrated in Asia and Europe rather than other regions. We also categorize the reviewed studies into six classifications depending on each method\u27s intended usage and further suggest four contexts for the studies’ future trajectory

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A review of application of multi-criteria decision making methods in construction

    Get PDF
    Construction is an area of study wherein making decisions adequately can mean the difference between success and failure. Moreover, most of the activities belonging to this sector involve taking into account a large number of conflicting aspects, which hinders their management as a whole. Multi-criteria decision making analysis arose to model complex problems like these. This paper reviews the application of 22 different methods belonging to this discipline in various areas of the construction industry clustered in 11 categories. The most significant methods are briefly discussed, pointing out their principal strengths and limitations. Furthermore, the data gathered while performing the paper are statistically analysed to identify different trends concerning the use of these techniques. The review shows their usefulness in characterizing very different decision making environments, highlighting the reliability acquired by the most pragmatic and widespread methods and the emergent tendency to use some of them in combination

    Bibliometric analysis of scientific production on methods to aid decision making in the last 40 years

    Get PDF
    Purpose: Multicriteria methods have gained traction in both academia and industry practices for effective decision-making over the years. This bibliometric study aims to explore and provide an overview of research carried out on multicriteria methods, in its various aspects, over the past forty-four years. Design/Methodology/Approach: The Web of Science (WoS) and Scopus databases were searched for publications from January 1945 to April 29, 2021, on multicriteria methods in titles, abstracts, and keywords. The bibliographic data were analyzed using the R bibliometrix package. Findings: This bibliometric study asserts that 29,050 authors have produced 20,861 documents on the theme of multicriteria methods in 131 countries in the last forty-four years. Scientific production in this area grows at a rate of 13.88 per year. China is the leading country in publications with 14.14%; India with 10.76%; and Iran with 8.09%. Islamic Azad University leads others with 504 publications, followed by the Vilnius Gediminas Technical University with 456 and the National Institute of Technology with 336. As for journals, Expert Systems With Applications; Sustainability; and Journal of Cleaner Production are the leading journals, which account for more than 4.67% of all indexed literature. Furthermore, Zavadskas E. and Wang J have the highest publications in the multicriteria methods domain regarding the authors. Regarding the most commonly used multicriteria decision-making methods, AHP is the most favored approach among the ten countries with the most publications in this research area, followed by TOPSIS, VIKOR, PROMETHEE, and ANP. Practical implications: The bibliometric literature review method allows the researchers to explore the multicriteria research area more extensively than the traditional literature review method. It enables a large dataset of bibliographic records to be systematically analyzed through statistical measures, yielding informative insights. Originality/value: The usefulness of this bibliometric study is summed in presenting an overview of the topic of the multicriteria methods during the previous forty-four years, allowing other academics to use this research as a starting point for their research

    Are incomplete and self-confident preference relations better in multicriteria decision making? A simulation-based investigation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Incomplete preference relations and self-confident preference relations have been widely used in multicriteria decision-making problems. However, there is no strong evidence, in the current literature, to validate their use in decision-making. This paper reports on the design of two bounded rationality principle based simulation methods, and detailed experimental results, that aim at providing evidence to answer the following two questions: (1) what are the conditions under which incomplete preference relations are better than complete preference relations?; and (2) can self-confident preference relations improve the quality of decisions? The experimental results show that when the decision-maker is of medium rational degree, incomplete preference relations with a degree of incompleteness between 20% and 40% outperform complete preference relations; otherwise, the opposite happens. Furthermore, in most cases the quality of the decision making improves when using self-confident preference relations instead of incomplete preference relations. The paper ends with the presentation of a sensitivity analysis that contributes to the robustness of the experimental conclusions
    corecore