1,960 research outputs found

    Logic of Intuitionistic Interactive Proofs (Formal Theory of Perfect Knowledge Transfer)

    Full text link
    We produce a decidable super-intuitionistic normal modal logic of internalised intuitionistic (and thus disjunctive and monotonic) interactive proofs (LIiP) from an existing classical counterpart of classical monotonic non-disjunctive interactive proofs (LiP). Intuitionistic interactive proofs effect a durable epistemic impact in the possibly adversarial communication medium CM (which is imagined as a distinguished agent), and only in that, that consists in the permanent induction of the perfect and thus disjunctive knowledge of their proof goal by means of CM's knowledge of the proof: If CM knew my proof then CM would persistently and also disjunctively know that my proof goal is true. So intuitionistic interactive proofs effect a lasting transfer of disjunctive propositional knowledge (disjunctively knowable facts) in the communication medium of multi-agent distributed systems via the transmission of certain individual knowledge (knowable intuitionistic proofs). Our (necessarily) CM-centred notion of proof is also a disjunctive explicit refinement of KD45-belief, and yields also such a refinement of standard S5-knowledge. Monotonicity but not communality is a commonality of LiP, LIiP, and their internalised notions of proof. As a side-effect, we offer a short internalised proof of the Disjunction Property of Intuitionistic Logic (originally proved by Goedel).Comment: continuation of arXiv:1201.3667; extended start of Section 1 and 2.1; extended paragraph after Fact 1; dropped the N-rule as primitive and proved it derivable; other, non-intuitionistic family members: arXiv:1208.1842, arXiv:1208.591

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    A Pragmatic Interpretation of Quantum Logic

    Full text link
    Scholars have wondered for a long time whether the language of quantum mechanics introduces a quantum notion of truth which is formalized by quantum logic (QL) and is incompatible with the classical (Tarskian) notion. We show that QL can be interpreted as a pragmatic language of assertive formulas which formalize statements about physical systems that are empirically justified or unjustified in the framework of quantum mechanics. According to this interpretation, QL formalizes properties of the metalinguistic notion of empirical justification within quantum mechanics rather than properties of a quantum notion of truth. This conclusion agrees with a general integrationist perspective that interprets nonstandard logics as theories of metalinguistic notions different from truth, thus avoiding incompatibility with classical notions and preserving the globality of logic. By the way, some elucidations of the standard notion of quantum truth are also obtained. Key words: pragmatics, quantum logic, quantum mechanics, justifiability, global pluralism.Comment: Third version: 20 pages. Sects. 1, 2, and 4 rewritten and improved. Explanations adde

    A Galois connection between classical and intuitionistic logics. I: Syntax

    Full text link
    In a 1985 commentary to his collected works, Kolmogorov remarked that his 1932 paper "was written in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created, which would deal with objects of two types - propositions and problems." We construct such a formal system QHC, which is a conservative extension of both the intuitionistic predicate calculus QH and the classical predicate calculus QC. The only new connectives ? and ! of QHC induce a Galois connection (i.e., a pair of adjoint functors) between the Lindenbaum posets (i.e. the underlying posets of the Lindenbaum algebras) of QH and QC. Kolmogorov's double negation translation of propositions into problems extends to a retraction of QHC onto QH; whereas Goedel's provability translation of problems into modal propositions extends to a retraction of QHC onto its QC+(?!) fragment, identified with the modal logic QS4. The QH+(!?) fragment is an intuitionistic modal logic, whose modality !? is a strict lax modality in the sense of Aczel - and thus resembles the squash/bracket operation in intuitionistic type theories. The axioms of QHC attempt to give a fuller formalization (with respect to the axioms of intuitionistic logic) to the two best known contentual interpretations of intiuitionistic logic: Kolmogorov's problem interpretation (incorporating standard refinements by Heyting and Kreisel) and the proof interpretation by Orlov and Heyting (as clarified by G\"odel). While these two interpretations are often conflated, from the viewpoint of the axioms of QHC neither of them reduces to the other one, although they do overlap.Comment: 47 pages. The paper is rewritten in terms of a formal meta-logic (a simplified version of Isabelle's meta-logic

    Constructive Provability Logic

    Full text link
    We present constructive provability logic, an intuitionstic modal logic that validates the L\"ob rule of G\"odel and L\"ob's provability logic by permitting logical reflection over provability. Two distinct variants of this logic, CPL and CPL*, are presented in natural deduction and sequent calculus forms which are then shown to be equivalent. In addition, we discuss the use of constructive provability logic to justify stratified negation in logic programming within an intuitionstic and structural proof theory.Comment: Extended version of IMLA 2011 submission of the same titl

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later
    • …
    corecore