183 research outputs found

    Toward enhancement of deep learning techniques using fuzzy logic: a survey

    Get PDF
    Deep learning has emerged recently as a type of artificial intelligence (AI) and machine learning (ML), it usually imitates the human way in gaining a particular knowledge type. Deep learning is considered an essential data science element, which comprises predictive modeling and statistics. Deep learning makes the processes of collecting, interpreting, and analyzing big data easier and faster. Deep neural networks are kind of ML models, where the non-linear processing units are layered for the purpose of extracting particular features from the inputs. Actually, the training process of similar networks is very expensive and it also depends on the used optimization method, hence optimal results may not be provided. The techniques of deep learning are also vulnerable to data noise. For these reasons, fuzzy systems are used to improve the performance of deep learning algorithms, especially in combination with neural networks. Fuzzy systems are used to improve the representation accuracy of deep learning models. This survey paper reviews some of the deep learning based fuzzy logic models and techniques that were presented and proposed in the previous studies, where fuzzy logic is used to improve deep learning performance. The approaches are divided into two categories based on how both of the samples are combined. Furthermore, the models' practicality in the actual world is revealed

    New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic & Plithogenic Optimizations

    Get PDF
    This Special Issue puts forward for discussion state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, neutrosophic symmetry, and their applications in the real world. This book leads to the further advancement of the neutrosophic and plithogenic theories of NeutroAlgebra and AntiAlgebra, NeutroGeometry and AntiGeometry, Neutrosophic n-SuperHyperGraph (the most general form of graph of today), Neutrosophic Statistics, Plithogenic Logic as a generalization of MultiVariate Logic, Plithogenic Probability and Plithogenic Statistics as a generalization of MultiVariate Probability and Statistics, respectively, and presents their countless applications in our every-day world

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    Data Science: Measuring Uncertainties

    Get PDF
    With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems

    Fuzzy logic based approach for object feature tracking

    Get PDF
    This thesis introduces a novel technique for feature tracking in sequences of greyscale images based on fuzzy logic. A versatile and modular methodology for feature tracking using fuzzy sets and inference engines is presented. Moreover, an extension of this methodology to perform the correct tracking of multiple features is also presented. To perform feature tracking three membership functions are initially defined. A membership function related to the distinctive property of the feature to be tracked. A membership function is related to the fact of considering that the feature has smooth movement between each image sequence and a membership function concerns its expected future location. Applying these functions to the image pixels, the corresponding fuzzy sets are obtained and then mathematically manipulated to serve as input to an inference engine. Situations such as occlusion or detection failure of features are overcome using estimated positions calculated using a motion model and a state vector of the feature. This methodology was previously applied to track a single feature identified by the user. Several performance tests were conducted on sequences of both synthetic and real images. Experimental results are presented, analysed and discussed. Although this methodology could be applied directly to multiple feature tracking, an extension of this methodology has been developed within that purpose. In this new method, the processing sequence of each feature is dynamic and hierarchical. Dynamic because this sequence can change over time and hierarchical because features with higher priority will be processed first. Thus, the process gives preference to features whose location are easier to predict compared with features whose knowledge of their behavior is less predictable. When this priority value becomes too low, the feature will no longer tracked by the algorithm. To access the performance of this new approach, sequences of images where several features specified by the user are to be tracked were used. In the final part of this work, conclusions drawn from this work as well as the definition of some guidelines for future research are presented.Nesta tese é introduzida uma nova técnica de seguimento de pontos característicos de objectos em sequências de imagens em escala de cinzentos baseada em lógica difusa. É apresentada uma metodologia versátil e modular para o seguimento de objectos utilizando conjuntos difusos e motores de inferência. É também apresentada uma extensão desta metodologia para o correcto seguimento de múltiplos pontos característicos. Para se realizar o seguimento são definidas inicialmente três funções de pertença. Uma função de pertença está relacionada com a propriedade distintiva do objecto que desejamos seguir, outra está relacionada com o facto de se considerar que o objecto tem uma movimentação suave entre cada imagem da sequência e outra função de pertença referente à sua previsível localização futura. Aplicando estas funções de pertença aos píxeis da imagem, obtêm-se os correspondentes conjuntos difusos, que serão manipulados matematicamente e servirão como entrada num motor de inferência. Situações como a oclusão ou falha na detecção dos pontos característicos são ultrapassadas utilizando posições estimadas calculadas a partir do modelo de movimento e a um vector de estados do objecto. Esta metodologia foi inicialmente aplicada no seguimento de um objecto assinalado pelo utilizador. Foram realizados vários testes de desempenho em sequências de imagens sintéticas e também reais. Os resultados experimentais obtidos são apresentados, analisados e discutidos. Embora esta metodologia pudesse ser aplicada directamente ao seguimento de múltiplos pontos característicos, foi desenvolvida uma extensão desta metodologia para esse fim. Nesta nova metodologia a sequência de processamento de cada ponto característico é dinâmica e hierárquica. Dinâmica por ser variável ao longo do tempo e hierárquica por existir uma hierarquia de prioridades relativamente aos pontos característicos a serem seguidos e que determina a ordem pela qual esses pontos são processados. Desta forma, o processo dá preferência a pontos característicos cuja localização é mais fácil de prever comparativamente a pontos característicos cujo conhecimento do seu comportamento seja menos previsível. Quando esse valor de prioridade se torna demasiado baixo, esse ponto característico deixa de ser seguido pelo algoritmo. Para se observar o desempenho desta nova abordagem foram utilizadas sequências de imagens onde várias características indicadas pelo utilizador são seguidas. Na parte final deste trabalho são apresentadas as conclusões resultantes a partir do desenvolvimento deste trabalho, bem como a definição de algumas linhas de investigação futura

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    Full Issue

    Get PDF
    • …
    corecore