1,001 research outputs found

    On an Intuitionistic Logic for Pragmatics

    Get PDF
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justications and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a logic of assertions and conjectures: looking at the S4 modal translation, we give a denition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is dened and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, dened as a hypothesis that in some situation the truth of p is epistemically necessary

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Introduction to clarithmetic I

    Get PDF
    "Clarithmetic" is a generic name for formal number theories similar to Peano arithmetic, but based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of the more traditional classical or intuitionistic logics. Formulas of clarithmetical theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Imposing various complexity constraints on such solutions yields various versions of clarithmetic. The present paper introduces a system of clarithmetic for polynomial time computability, which is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be efficiently extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is written in a semitutorial style and targets readers with no prior familiarity with computability logic

    The intuitionistic fragment of computability logic at the propositional level

    Get PDF
    This paper presents a soundness and completeness proof for propositional intuitionistic calculus with respect to the semantics of computability logic. The latter interprets formulas as interactive computational problems, formalized as games between a machine and its environment. Intuitionistic implication is understood as algorithmic reduction in the weakest possible -- and hence most natural -- sense, disjunction and conjunction as deterministic-choice combinations of problems (disjunction = machine's choice, conjunction = environment's choice), and "absurd" as a computational problem of universal strength. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic
    • …
    corecore