89 research outputs found

    Not Quite Intuitionism

    Get PDF
    This is an investigation of M. Dummett's claim that a theory of meaning based on verification conditions should lead to the abandonment of classical logic in favor of intuitionistic logic. I especially concentrate on his suggestion that, in order to give the meaning of negations and conditionals, we should also take on board falsification conditions. Taken seriously, however, this route takes us not to intuitionistic logic, but rather to one of the Nelson logics

    Symmetric and dual paraconsistent logics

    Get PDF
    Two new first-order paraconsistent logics with De Morgan-type negations and co-implication, called symmetric paraconsistent logic (SPL) and dual paraconsistent logic (DPL), are introduced as Gentzen-type sequent calculi. The logic SPL is symmetric in the sense that the rule of contraposition is admissible in cut-free SPL. By using this symmetry property, a simpler cut-free sequent calculus for SPL is obtained. The logic DPL is not symmetric, but it has the duality principle. Simple semantics for SPL and DPL are introduced, and the completeness theorems with respect to these semantics are proved. The cut-elimination theorems for SPL and DPL are proved in two ways: One is a syntactical way which is based on the embedding theorems of SPL and DPL into Gentzen’s LK, and the other is a semantical way which is based on the completeness theorems

    General Proof Theory. Celebrating 50 Years of Dag Prawitz's "Natural Deduction". Proceedings of the Conference held in TĂŒbingen, 27-29 November 2015

    Get PDF
    General proof theory studies how proofs are structured and how they relate to each other, and not primarily what can be proved in particular formal systems. It has been developed within the framework of Gentzen-style proof theory, as well as in categorial proof theory. As Dag Prawitz's monograph "Natural Deduction" (1965) paved the way for this development (he also proposed the term "General Proof Theory"), it is most appropriate to use this topic to celebrate 50 years of this work. The conference took place 27-29 November, 2015 in TĂŒbingen at the Department of Philosophy. The proceedings collect abstracts, slides and papers of the presentations given, as well as contributions from two speakers who were unable to attend

    Zero-one laws with respect to models of provability logic and two Grzegorczyk logics

    Get PDF
    It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5 and for frames corresponding to S4 and S5. In this paper, we prove zero-one laws for provability logic and its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to model validity. Moreover, we axiomatize validity in almost all relevant finite models, leading to three different axiom systems

    Negation in context

    Get PDF
    The present essay includes six thematically connected papers on negation in the areas of the philosophy of logic, philosophical logic and metaphysics. Each of the chapters besides the first, which puts each the chapters to follow into context, highlights a central problem negation poses to a certain area of philosophy. Chapter 2 discusses the problem of logical revisionism and whether there is any room for genuine disagreement, and hence shared meaning, between the classicist and deviant's respective uses of 'not'. If there is not, revision is impossible. I argue that revision is indeed possible and provide an account of negation as contradictoriness according to which a number of alleged negations are declared genuine. Among them are the negations of FDE (First-Degree Entailment) and a wide family of other relevant logics, LP (Priest's dialetheic "Logic of Paradox"), Kleene weak and strong 3-valued logics with either "exclusion" or "choice" negation, and intuitionistic logic. Chapter 3 discusses the problem of furnishing intuitionistic logic with an empirical negation for adequately expressing claims of the form 'A is undecided at present' or 'A may never be decided' the latter of which has been argued to be intuitionistically inconsistent. Chapter 4 highlights the importance of various notions of consequence-as-s-preservation where s may be falsity (versus untruth), indeterminacy or some other semantic (or "algebraic") value, in formulating rationality constraints on speech acts and propositional attitudes such as rejection, denial and dubitability. Chapter 5 provides an account of the nature of truth values regarded as objects. It is argued that only truth exists as the maximal truthmaker. The consequences this has for semantics representationally construed are considered and it is argued that every logic, from classical to non-classical, is gappy. Moreover, a truthmaker theory is developed whereby only positive truths, an account of which is also developed therein, have truthmakers. Chapter 6 investigates the definability of negation as "absolute" impossibility, i.e. where the notion of necessity or possibility in question corresponds to the global modality. The modality is not readily definable in the usual Kripkean languages and so neither is impossibility taken in the broadest sense. The languages considered here include one with counterfactual operators and propositional quantification and another bimodal language with a modality and its complementary. Among the definability results we give some preservation and translation results as well

    Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning

    Full text link
    Program logics for bug-finding (such as the recently introduced Incorrectness Logic) have framed correctness and incorrectness as dual concepts requiring different logical foundations. In this paper, we argue that a single unified theory can be used for both correctness and incorrectness reasoning. We present Outcome Logic (OL), a novel generalization of Hoare Logic that is both monadic (to capture computational effects) and monoidal (to reason about outcomes and reachability). OL expresses true positive bugs, while retaining correctness reasoning abilities as well. To formalize the applicability of OL to both correctness and incorrectness, we prove that any false OL specification can be disproven in OL itself. We also use our framework to reason about new types of incorrectness in nondeterministic and probabilistic programs. Given these advances, we advocate for OL as a new foundational theory of correctness and incorrectness
    • 

    corecore