2,419 research outputs found

    Intrusion Detection System by Fuzzy Interpolation

    Get PDF
    Network intrusion detection systems identify malicious connections and thus help protect networks from attacks. Various data-driven approaches have been used in the development of network intrusion detection systems, which usually lead to either very complex systems or poor generalization ability due to the complexity of this challenge. This paper proposes a data-driven network intrusion detection system using fuzzy interpolation in an effort to address the aforementioned limitations. In particular, the developed system equipped with a sparse rule base not only guarantees the online performance of intrusion detection, but also allows the generation of security alerts from situations which are not directly covered by the existing knowledge base. The proposed system has been applied to a well-known data set for system validation and evaluation with competitive results generated

    Dynamic fuzzy rule interpolation and its application to intrusion detection

    Get PDF
    Fuzzy rule interpolation (FRI) offers an effective approach for making inference possible in sparse rule-based systems (and also for reducing the complexity of fuzzy models). However, requirements of fuzzy systems may change over time and hence, the use of a static rule base may affect the accuracy of FRI applications. Fortunately, an FRI system in action will produce interpolated rules in abundance during the interpolative reasoning process. While such interpolated results are discarded in existing FRI systems, they can be utilized to facilitate the development of a dynamic rule base in supporting subsequent inference. This is because the otherwise relinquished interpolated rules may contain possibly valuable information, covering regions that were uncovered by the original sparse rule base. This paper presents a dynamic fuzzy rule interpolation (D-FRI) approach by exploiting such interpolated rules in order to improve the overall system's coverage and efficacy. The resulting D-FRI system is able to select, combine, and generalize informative, frequently used interpolated rules for merging with the existing rule base while performing interpolative reasoning. Systematic experimental investigations demonstrate that D-FRI outperforms conventional FRI techniques, with increased accuracy and robustness. Furthermore, D-FRI is herein applied for network security analysis, in devising a dynamic intrusion detection system (IDS) through integration with the Snort software, one of the most popular open source IDSs. This integration, denoted as D-FRI-Snort hereafter, delivers an extra amount of intelligence to predict the level of potential threats. Experimental results show that with the inclusion of a dynamic rule base, by generalising newly interpolated rules based on the current network traffic conditions, D-FRI-Snort helps reduce both false positives and false negatives in intrusion detection

    Fuzzy Rule Interpolation and SNMP-MIB for Emerging Network Abnormality

    Get PDF
    It is difficult to implement an efficient detection approach for Intrusion Detection Systems (IDS) and many factors contribute to this challenge. One such challenge concerns establishing adequate boundaries and finding a proper data source. Typical IDS detection approaches deal with raw traffics. These traffics need to be studied in depth and thoroughly investigated in order to extract the required knowledge base. Another challenge involves implementing the binary decision. This is because there are no reasonable limits between normal and attack traffics patterns. In this paper, we introduce a novel idea capable of supporting the proper data source while avoiding the issues associated with the binary decision. This paper aims to introduce a detection approach for defining abnormality by using the Fuzzy Rule Interpolation (FRI) with Simple Network Management Protocol (SNMP) Management Information Base (MIB) parameters. The strength of the proposed detection approach is based on adapting the SNMP-MIB parameters with the FRI.  This proposed method eliminates the raw traffic processing component which is time consuming and requires extensive computational measures. It also eliminates the need for a complete fuzzy rule based intrusion definition. The proposed approach was tested and evaluated using an open source SNMP-MIB dataset and obtained a 93% detection rate. Additionally, when compared to other literature in which the same test-bed environment was employed along with the same number of parameters, the proposed detection approach outperformed the support vector machine and neural network. Therefore, combining the SNMP-MIB parameters with the FRI based reasoning could be beneficial for detecting intrusions, even in the case if the fuzzy rule based intrusion definition is incomplete (not fully defined)

    Dynamic Fuzzy Rule Interpolation

    Get PDF
    • …
    corecore