9,401 research outputs found

    DCDIDP: A Distributed, Collaborative, and Data-driven IDP Framework for the Cloud

    Get PDF
    Recent advances in distributed computing, grid computing, virtualization mechanisms, and utility computing led into Cloud Computing as one of the industry buzz words of our decade. As the popularity of the services provided in the cloud environment grows exponentially, the exploitation of possible vulnerabilities grows with the same pace. Intrusion Detection and Prevention Systems (IDPSs) are one of the most popular tools among the front line fundamental tools to defend the computation and communication infrastructures from the intruders. In this poster, we propose a distributed, collaborative, and data-driven IDP (DCDIDP) framework for cloud computing environments. Both cloud providers and cloud customers will benefit significantly from DCDIDP that dynamically evolves and gradually mobilizes the resources in the cloud as suspicion about attacks increases. Such system will provide homogeneous IDPS for all the cloud providers that collaborate distributively. It will respond to the attacks, by collaborating with other peers and in a distributed manner, as near as possible to attack sources and at different levels of operations (e.g. network, host, VM). We present the DCDIDP framework and explain its components. However, further explanation is part of our ongoing work

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment

    Full text link
    The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart gridComment: 5 pages, 2 figure

    A Security Monitoring Framework For Virtualization Based HEP Infrastructures

    Full text link
    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware. This malware was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2016, 10-14 October 2016, San Francisco. Submitted to Journal of Physics: Conference Series (JPCS

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability
    corecore