375 research outputs found

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    Multipath Routing of Fragmented Data Transfer in a Smart Grid Environment

    Full text link
    The purpose of this paper is to do a general survey on the existing communication modes inside a smart grid, the existing security loopholes and their countermeasures. Then we suggest a detailed countermeasure, building upon the Jigsaw based secure data transfer [8] for enhanced security of the data flow inside the communication system of a smart grid. The paper has been written without the consideration of any factor of inoperability between the various security techniques inside a smart gridComment: 5 pages, 2 figure

    Intrusion Detection for Smart Grid Communication Systems

    Get PDF
    Transformation of the traditional power grid into a smart grid hosts an array of vulnerabilities associated with communication networks. Furthermore, wireless mediums used throughout the smart grid promote an environment where Denial of Service (DoS) attacks are very effective. In wireless mediums, jamming and spoofing attack techniques diminish system operations thus affecting smart grid stability and posing an immediate threat to Confidentiality, Integrity, and Availability (CIA) of the smart grid. Intrusion detection systems (IDS) serve as a primary defense in mitigating network vulnerabilities. In IDS, signatures created from historical data are compared to incoming network traffic to identify abnormalities. In this thesis, intrusion detection algorithms are proposed for attack detection in smart grid networks by means of physical, data link, network, and session layer analysis. Irregularities in these layers provide insight to whether the network is experiencing genuine or malicious activity

    Security assessment of the smart grid : a review focusing on the NAN architecture

    Get PDF
    Abstract: This paper presents a comprehensive review on the security aspect of the smart grid communication network. The paper focus on the Neighborhood Area Network (NAN) cybersecurity and it laid emphasis on how the NAN architecture is such an attractive target to intruders and attackers. The paper aims at summarizing recent research efforts on some of the attacks and the various techniques employed in tackling them as they were discussed in recent literatures and research works. Furthermore, the paper presents a detailed review on the smart grid communication layers, wireless technology standards, networks and the security challenges the grid is currently facing. The work concludes by explaining current and future directions NAN communication security could consider in terms of data privacy measures. The data privacy measures are discussed in terms of prevention and detection techniques

    Advanced Metering Infrastructure Based on Smart Meters in Smart Grid

    Get PDF
    Due to lack of situational awareness, automated analysis, poor visibility, and mechanical switches, today\u27s electric power grid has been aging and ill‐suited to the demand for electricity, which has gradually increased, in the twenty‐first century. Besides, the global climate change and the greenhouse gas emissions on the Earth caused by the electricity industries, the growing population, one‐way communication, equipment failures, energy storage problems, the capacity limitations of electricity generation, decrease in fossil fuels, and resilience problems put more stress on the existing power grid. Consequently, the smart grid (SG) has emerged to address these challenges. To realize the SG, an advanced metering infrastructure (AMI) based on smart meters is the most important key

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Vulnerability and resilience of cyber-physical power systems: results from an empirical-based study

    Full text link
    Power systems are undergoing a profound transformation towards cyber-physical systems. Disruptive changes due to energy system transition and the complexity of the interconnected systems expose the power system to new, unknown and unpredictable risks. To identify the critical points, a vulnerability assessment was conducted, involving experts from power as well as information and communication technologies (ICT) sectors. Weaknesses were identified e.g.,the lack of policy enforcement worsened by the unreadiness of involved actors. The complex dynamics of ICT makes it infeasible to keep a complete inventory of potential stressors to define appropriate preparation and prevention mechanisms. Therefore, we suggest applying a resilience management approach to increase the resilience of the system. It aims at a better ride through failures rather than building higher walls. We conclude that building resilience in cyber-physical power systems is feasible and helps in preparing for the unexpected
    • 

    corecore