10,385 research outputs found

    Automatic Dataset Labelling and Feature Selection for Intrusion Detection Systems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Correctly labelled datasets are commonly required. Three particular scenarios are highlighted, which showcase this need. When using supervised Intrusion Detection Systems (IDSs), these systems need labelled datasets to be trained. Also, the real nature of the analysed datasets must be known when evaluating the efficiency of the IDSs when detecting intrusions. Another scenario is the use of feature selection that works only if the processed datasets are labelled. In normal conditions, collecting labelled datasets from real networks is impossible. Currently, datasets are mainly labelled by implementing off-line forensic analysis, which is impractical because it does not allow real-time implementation. We have developed a novel approach to automatically generate labelled network traffic datasets using an unsupervised anomaly based IDS. The resulting labelled datasets are subsets of the original unlabelled datasets. The labelled dataset is then processed using a Genetic Algorithm (GA) based approach, which performs the task of feature selection. The GA has been implemented to automatically provide the set of metrics that generate the most appropriate intrusion detection results

    Reinforced Intrusion Detection Using Pursuit Reinforcement Competitive Learning

    Get PDF
    Today, information technology is growing rapidly,all information can be obtainedmuch easier. It raises some new problems; one of them is unauthorized access to the system. We need a reliable network security system that is resistant to a variety of attacks against the system. Therefore, Intrusion Detection System (IDS) required to overcome the problems of intrusions. Many researches have been done on intrusion detection using classification methods. Classification methodshave high precision, but it takes efforts to determine an appropriate classification model to the classification problem. In this paper, we propose a new reinforced approach to detect intrusion with On-line Clustering using Reinforcement Learning. Reinforcement Learning is a new paradigm in machine learning which involves interaction with the environment.It works with reward and punishment mechanism to achieve solution. We apply the Reinforcement Learning to the intrusion detection problem with considering competitive learning using Pursuit Reinforcement Competitive Learning (PRCL). Based on the experimental result, PRCL can detect intrusions in real time with high accuracy (99.816% for DoS, 95.015% for Probe, 94.731% for R2L and 99.373% for U2R) and high speed (44 ms).The proposed approach can help network administrators to detect intrusion, so the computer network security systembecome reliable.Keywords: Intrusion Detection System, On-Line Clustering, Reinforcement Learning, Unsupervised Learning

    Enhancing the Efficiency of Attack Detection System Using Feature selection and Feature Discretization Methods

    Get PDF
    Intrusion detection technologies have grown in popularity in recent years using machine learning. The variety of new security attacks are increasing, necessitating the development of effective and intelligent countermeasures. The existing intrusion detection system (IDS) uses Signature or Anomaly based detection systems with machine learning algorithms to detect malicious activities. The Signature-based detection rely only on signatures that have been pre-programmed into the systems, detect known attacks and cannot detect any new or unusual activity. The Anomaly based detection using supervised machine learning algorithm detects only known threats. To address this issue, the proposed model employs an unsupervised machine learning approach for detecting attacks. This approach combines the Sub Space Clustering and One Class Support Vector Machine algorithms and utilizes feature selection methods such as Chi-square, as well as Feature Discretization Methods like Equal Width Discretization to identify both known and undiscovered assaults. The results of the experiments using proposed model outperforms several of the existing system in terms of detection rate and accuracy and decrease in the computational time

    Support Vector Machine for Network Intrusion and Cyber-Attack Detection

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Cyber-security threats are a growing concern in networked environments. The development of Intrusion Detection Systems (IDSs) is fundamental in order to provide extra level of security. We have developed an unsupervised anomaly-based IDS that uses statistical techniques to conduct the detection process. Despite providing many advantages, anomaly-based IDSs tend to generate a high number of false alarms. Machine Learning (ML) techniques have gained wide interest in tasks of intrusion detection. In this work, Support Vector Machine (SVM) is deemed as an ML technique that could complement the performance of our IDS, providing a second line of detection to reduce the number of false alarms, or as an alternative detection technique. We assess the performance of our IDS against one-class and two-class SVMs, using linear and non-linear forms. The results that we present show that linear two-class SVM generates highly accurate results, and the accuracy of the linear one-class SVM is very comparable, and it does not need training datasets associated with malicious data. Similarly, the results evidence that our IDS could benefit from the use of ML techniques to increase its accuracy when analysing datasets comprising of non-homogeneous features

    Unsupervised Anomaly Detection with Unlabeled Data Using Clustering

    Get PDF
    Intrusions pose a serious security risk in a network environment. New intrusion types, of which detection systems are unaware, are the most difficult to detect. The amount of available network audit data instances is usually large; human labeling is tedious, time-consuming, and expensive. Traditional anomaly detection algorithms require a set of purely normal data from which they train their model. We present a clustering-based intrusion detection algorithm, unsupervised anomaly detection, which trains on unlabeled data in order to detect new intrusions. Our method is able to detect many different types of intrusions, while maintaining a low false positive rate as verified over the Knowledge Discovery and Data Mining - KDD CUP 1999 dataset

    Anomaly detection using prior knowledge: application to TCP/IP traffic

    Get PDF
    This article introduces an approach to anomaly intrusion detection based on a combination of supervised and unsupervised machine learning algorithms. The main objective of this work is an effective modeling of the TCP/IP network traffic of an organization that allows the detection of anomalies with an efficient percentage of false positives for a production environment. The architecture proposed uses a hierarchy of Self-Organizing Maps for traffic modeling combined with Learning Vector Quantization techniques to ultimately classify network packets. The architecture is developed using the known SNORT intrusion detection system to preprocess network traffic. In comparison to other techniques, results obtained in this work show that acceptable levels of compromise between attack detection and false positive rates can be achieved.IFIP International Conference on Artificial Intelligence in Theory and Practice - Neural NetsRed de Universidades con Carreras en Informática (RedUNCI
    corecore