563 research outputs found

    DEEP LEARNING TECHNIQUES FOR DETECTION OF FALSE DATA INJECTION ATTACKS ON ELECTRIC POWER GRID

    Get PDF
    The electric power grid uses a set of measuring and switching devices for its operations and control. The data retrieved from the measuring instruments is assumed to be noisy, therefore a state estimator is used to estimate the correct values of state variables on which the system can take control actions. The modern electric power grid is dependent on communication networks for transferring these measurements, which are susceptible to intrusions from hackers. False data injection attacks (FDIA) are one of the most common attack strategies where an intruder tries to trick the underlying control system of the grid to cause disruptions without getting detected by native anomaly detection measures inbuilt in the state estimator. The native anomaly detection mechanism relies on threshold and residual based measure to flag a set of measurements as anomaly. Therefore, if the attack is devised in such a way that the intrusion can be performed without significantly affecting the residual error of state estimation it can go undetected. We propose a data augmented deep learning based solution to detect such attacks in real time. We propose methods of generating realistic random and targeted attack simulations on standard IEEE architectures and methods of detecting them using deep learning models. We propose recurrent neural network (RNN) based architectures to detect and locate FDIAs and devices compromised in real-time. For detection we propose a supervised and an unsupervised method. Similarly, for location we propose a method to find exact devices compromised which is less practical and then move on to a more feasible and practical solution in supervised and unsupervised conditions. Being an intrusion detection system it is critical to detect all attacks which means false negatives should be penalized heavily, whereas false positives can be accommodated. Therefore, we use recall as our primary performance metric and precision recall curve to find an optimal threshold of probability score. In addition, we demonstrate how our approach is better than a residual error and other previous detection models. We also compare the performance of our models with increasing number of devices being compromised

    FedEdge AI-TC: A Semi-supervised Traffic Classification Method based on Trusted Federated Deep Learning for Mobile Edge Computing

    Full text link
    As a typical entity of MEC (Mobile Edge Computing), 5G CPE (Customer Premise Equipment)/HGU (Home Gateway Unit) has proven to be a promising alternative to traditional Smart Home Gateway. Network TC (Traffic Classification) is a vital service quality assurance and security management method for communication networks, which has become a crucial functional entity in 5G CPE/HGU. In recent years, many researchers have applied Machine Learning or Deep Learning (DL) to TC, namely AI-TC, to improve its performance. However, AI-TC faces challenges, including data dependency, resource-intensive traffic labeling, and user privacy concerns. The limited computing resources of 5G CPE further complicate efficient classification. Moreover, the "black box" nature of AI-TC models raises transparency and credibility issues. The paper proposes the FedEdge AI-TC framework, leveraging Federated Learning (FL) for reliable Network TC in 5G CPE. FL ensures privacy by employing local training, model parameter iteration, and centralized training. A semi-supervised TC algorithm based on Variational Auto-Encoder (VAE) and convolutional neural network (CNN) reduces data dependency while maintaining accuracy. To optimize model light-weight deployment, the paper introduces XAI-Pruning, an AI model compression method combined with DL model interpretability. Experimental evaluation demonstrates FedEdge AI-TC's superiority over benchmarks in terms of accuracy and efficient TC performance. The framework enhances user privacy and model credibility, offering a comprehensive solution for dependable and transparent Network TC in 5G CPE, thus enhancing service quality and security.Comment: 13 pages, 13 figure

    Semi-WTC: A Practical Semi-supervised Framework for Attack Categorization through Weight-Task Consistency

    Full text link
    Supervised learning has been widely used for attack categorization, requiring high-quality data and labels. However, the data is often imbalanced and it is difficult to obtain sufficient annotations. Moreover, supervised models are subject to real-world deployment issues, such as defending against unseen artificial attacks. To tackle the challenges, we propose a semi-supervised fine-grained attack categorization framework consisting of an encoder and a two-branch structure and this framework can be generalized to different supervised models. The multilayer perceptron with residual connection is used as the encoder to extract features and reduce the complexity. The Recurrent Prototype Module (RPM) is proposed to train the encoder effectively in a semi-supervised manner. To alleviate the data imbalance problem, we introduce the Weight-Task Consistency (WTC) into the iterative process of RPM by assigning larger weights to classes with fewer samples in the loss function. In addition, to cope with new attacks in real-world deployment, we propose an Active Adaption Resampling (AAR) method, which can better discover the distribution of unseen sample data and adapt the parameters of encoder. Experimental results show that our model outperforms the state-of-the-art semi-supervised attack detection methods with a 3% improvement in classification accuracy and a 90% reduction in training time.Comment: Tech repor

    Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data

    Get PDF
    With cyberattacks growing in frequency and sophistication, effective anomaly detection is critical for securing networks and systems. This study provides a comparative evaluation of deep generative models for detecting anomalies in network intrusion data. The key objective is to determine the most accurate model architecture. Variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) are tested on the NSL-KDD dataset containing normal traffic and different attack types. Results show that AAEs significantly outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 and F1 scores of 0.76 on novel attacks. The adversarial regularization of AAEs enables superior generalization capabilities compared to standard VAEs. VAE-GANs exhibit better accuracy than VAEs, demonstrating the benefits of adversarial training. However, VAE-GANs have higher computational requirements. The findings provide strong evidence that AAEs are the most effective deep anomaly detection technique for intrusion detection systems. This study delivers novel insights into optimizing deep learning architectures for cyber defense. The comparative evaluation methodology and results will aid researchers and practitioners in selecting appropriate models for operational network security
    • …
    corecore