759 research outputs found

    Intrusion detection effectiveness improvement by a multiagent system

    Get PDF
    Recent studies about Intrusion Detection Systems (IDS) performance reveal that the value of an IDS and its optimal operation point depend not only on the Hit and False alarm rates but also on costs (such as those associated with making incorrect decisions about detection) and the hostility of the operating environment. An adaptive multiagent IDS is proposed in this paper and it is evaluated according to a promising metric that take into account all these parameters. This paper shows results of a prototype that clearly point out how multiagent technology can improve IDS effectiveness.Publicad

    Adaptive agents applied to intrusion detection

    Get PDF
    Proceeding of: Multi-agent systems and applications III : 3rd International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS 2003 Prague, Czech Republic, June 16–18, 2003This paper proposes a system of agents that make predictions over the presence of intrusions. Some of the agents act as predictors implementing a given Intrusion Detection model, sniffing out the same traffic. An assessment agent weights the forecasts of such predictor agents, giving a final binary conclusion using a probabilistic model. These weights are continuously adapted according to the previous performance of each predictor agent. Other agent establishes if the prediction from the assessor agent was right or not, sending him back the results. This process is continually repeated and runs without human interaction. The effectiveness of our proposal is measured with the usual method applied in Intrusion Detection domain: Receiver Operating Characteristic curves (detection rate versus false alarm rate). Results of the adaptive agents applied to intrusion detection improve ROC curves as it is shown in this paper.Publicad

    MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search

    Get PDF
    Detecting attacks targeted against military and commercial computer networks is a crucial element in the domain of cyberwarfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel attacks. This research continues the development of a novel simulated, multiagent, flow-based intrusion detection system called MFIRE. Agents in the network are trained to recognize common attacks, and they share data with other agents to improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model, and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality. The reputation model is extensively tested in two configurations and results show that it is significantly superior to a system with non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new network defense capabilities, and should be considered for implementation in future cyberwarfare applications

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism

    INTRUSION DETECTION SYSTEM USING DYNAMIC AGENT SELECTION AND CONFIGURATION

    Get PDF
    Intrusion detection is the process of monitoring the events occurring in a computer system or network and analysing them for signs of possible incidents, which are violations or imminent threats of violation of computer security policies, acceptable use policies, or standard security practices. An intrusion detection system (IDS) monitors network traffic and monitors for suspicious activity and alerts the system or network administrator. It identifies unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators. Intrusion detection systems (IDS) are essential components in a secure network environment, allowing for early detection of malicious activities and attacks. By employing information provided by IDS, it is possible to apply appropriate countermeasures and mitigate attacks that would otherwise seriously undermine network security. However, Increasing traffic and the necessity of stateful analysis impose strong computational requirements on network intrusion detection systems (NIDS), and motivate the need of architectures with multiple dynamic sensors. In a context of high traffic with heavy tailed characteristics, static rules for dispatching traffic slices among sensors cause severe imbalance. The current high volumes of network traffic overwhelm most IDS techniques requiring new approaches that are able to handle huge volume of log and packet analysis while still maintaining high throughput. This paper shows that the use of dynamic agents has practical advantages for intrusion detection. Our approach features unsupervised adjustment of its configuration and dynamic adaptation to the changing environment, which improvises the performance of IDS significantly. KEYWORDS—Intrusion Detection System, Agent Based IDS, Dynamic Sensor Selection. I

    Hybrid Multi Agent-Neural Network Intrusion Detection with Mobile Visualization

    Get PDF
    A multiagent system that incorporates an Artificial Neural Networks based Intrusion Detection System (IDS) has been defined to guaranty an efficient computer network security architecture. The proposed system facilitates the intrusion detection in dynamic networks. This paper presents the structure of the Mobile Visualization Connectionist Agent-Based IDS, more flexible and adaptable. The proposed improvement of the system in this paper includes deliberative agents that use the artificial neural network to identify intrusions in computer networks. The agent based system has been probed through anomalous situations related to the Simple Network Management Protocol
    • …
    corecore