4 research outputs found

    An OS-Based Alternative to Full Hardware Coherence on Tiled Chip-Multiprocessors

    Get PDF
    Institute for Computing Systems ArchitectureThe interconnect mechanisms (shared bus or crossbar) used in current chip-multiprocessors (CMPs) are expected to become a bottleneck that prevents these architectures from scaling to a larger number of cores. Tiled CMPs offer better scalability by integrating relatively simple cores with a lightweight point-to-point interconnect. However, such interconnects make snooping impractical and, thus, require alternative solutions to cache coherence. This thesis proposes a novel, cost-effective hardware mechanism to support shared-memory parallel applications that forgoes hardware maintained cache coherence. The proposed mech- anism is based on the key ideas that mapping of lines to physical caches is done at the page level with OS support and that hardware supports remote cache accesses. It allows only some controlled migration and replication of data and provides a sufficient degree of flexibility in the mapping through an extra level of indirection between virtual pages and physical tiles. The proposed tiled CMP architecture is evaluated on the SPLASH-2 scientific benchmarks and ALPBench multimedia benchmarks against one with private caches and a distributed direc- tory cache coherence mechanism. Experimental results show that the performance degradation is as little as 0%, and 16% on average, compared to the cache coherent architecture across all benchmarks for 16 and 32 processors

    Compiler techniques for scalable performance of stream programs on multicore architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 211-222).Given the ubiquity of multicore processors, there is an acute need to enable the development of scalable parallel applications without unduly burdening programmers. Currently, programmers are asked not only to explicitly expose parallelism but also concern themselves with issues of granularity, load-balancing, synchronization, and communication. This thesis demonstrates that when algorithmic parallelism is expressed in the form of a stream program, a compiler can effectively and automatically manage the parallelism. Our compiler assumes responsibility for low-level architectural details, transforming implicit algorithmic parallelism into a mapping that achieves scalable parallel performance for a given multicore target. Stream programming is characterized by regular processing of sequences of data, and it is a natural expression of algorithms in the areas of audio, video, digital signal processing, networking, and encryption. Streaming computation is represented as a graph of independent computation nodes that communicate explicitly over data channels. Our techniques operate on contiguous regions of the stream graph where the input and output rates of the nodes are statically determinable. Within a static region, the compiler first automatically adjusts the granularity and then exploits data, task, and pipeline parallelism in a holistic fashion. We introduce techniques that data-parallelize nodes that operate on overlapping sliding windows of their input, translating serializing state into minimal and parametrized inter-core communication. Finally, for nodes that cannot be data-parallelized due to state, we are the first to automatically apply software-pipelining techniques at a coarse granularity to exploit pipeline parallelism between stateful nodes. Our framework is evaluated in the context of the StreamIt programming language. StreamIt is a high-level stream programming language that has been shown to improve programmer productivity in implementing streaming algorithms. We employ the StreamIt Core benchmark suite of 12 real-world applications to demonstrate the effectiveness of our techniques for varying multicore architectures. For a 16-core distributed memory multicore, we achieve a 14.9x mean speedup. For benchmarks that include sliding-window computation, our sliding-window data-parallelization techniques are required to enable scalable performance for a 16-core SMP multicore (14x mean speedup) and a 64-core distributed shared memory multicore (52x mean speedup).by Michael I. Gordon.Ph.D

    Language and compiler support for stream programs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-166).Stream programs represent an important class of high-performance computations. Defined by their regular processing of sequences of data, stream programs appear most commonly in the context of audio, video, and digital signal processing, though also in networking, encryption, and other areas. Stream programs can be naturally represented as a graph of independent actors that communicate explicitly over data channels. In this work we focus on programs where the input and output rates of actors are known at compile time, enabling aggressive transformations by the compiler; this model is known as synchronous dataflow. We develop a new programming language, StreamIt, that empowers both programmers and compiler writers to leverage the unique properties of the streaming domain. StreamIt offers several new abstractions, including hierarchical single-input single-output streams, composable primitives for data reordering, and a mechanism called teleport messaging that enables precise event handling in a distributed environment. We demonstrate the feasibility of developing applications in StreamIt via a detailed characterization of our 34,000-line benchmark suite, which spans from MPEG-2 encoding/decoding to GMTI radar processing. We also present a novel dynamic analysis for migrating legacy C programs into a streaming representation. The central premise of stream programming is that it enables the compiler to perform powerful optimizations. We support this premise by presenting a suite of new transformations. We describe the first translation of stream programs into the compressed domain, enabling programs written for uncompressed data formats to automatically operate directly on compressed data formats (based on LZ77). This technique offers a median speedup of 15x on common video editing operations.(cont.) We also review other optimizations developed in the StreamIt group, including automatic parallelization (offering an 11x mean speedup on the 16-core Raw machine), optimization of linear computations (offering a 5.5x average speedup on a Pentium 4), and cache-aware scheduling (offering a 3.5x mean speedup on a StrongARM 1100). While these transformations are beyond the reach of compilers for traditional languages such as C, they become tractable given the abundant parallelism and regular communication patterns exposed by the stream programming model.by William Thies.Ph.D
    corecore