1,296 research outputs found

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    Resiliency in numerical algorithm design for extreme scale simulations

    Get PDF
    This work is based on the seminar titled ‘Resiliency in Numerical Algorithm Design for Extreme Scale Simulations’ held March 1–6, 2020, at Schloss Dagstuhl, that was attended by all the authors. Advanced supercomputing is characterized by very high computation speeds at the cost of involving an enormous amount of resources and costs. A typical large-scale computation running for 48 h on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh, corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is clearly unacceptable to lose the whole computation if any of the several million parallel processes fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the whole computation be declared invalid? What about the notion of reproducibility itself: should this core paradigm of science be revised and refined for results that are obtained by large-scale simulation? Naive versions of conventional resilience techniques will not scale to the exascale regime: with a main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to background storage at frequent intervals will create intolerable overheads in runtime and energy consumption. Forecasts show that the mean time between failures could be lower than the time to recover from such a checkpoint, so that large calculations at scale might not make any progress if robust alternatives are not investigated. More advanced resilience techniques must be devised. The key may lie in exploiting both advanced system features as well as specific application knowledge. Research will face two essential questions: (1) what are the reliability requirements for a particular computation and (2) how do we best design the algorithms and software to meet these requirements? While the analysis of use cases can help understand the particular reliability requirements, the construction of remedies is currently wide open. One avenue would be to refine and improve on system- or application-level checkpointing and rollback strategies in the case an error is detected. Developers might use fault notification interfaces and flexible runtime systems to respond to node failures in an application-dependent fashion. Novel numerical algorithms or more stochastic computational approaches may be required to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an essential topic of the seminar. The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with expertise in exascale computing to discuss novel ways to make applications resilient against detected and undetected faults. In particular, participants explored the role that algorithms and applications play in the holistic approach needed to tackle this challenge. This article gathers a broad range of perspectives on the role of algorithms, applications and systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel ideas and encourage the development of concrete solutions for achieving such resilience holistically.Peer Reviewed"Article signat per 36 autors/es: Emmanuel Agullo, Mirco Altenbernd, Hartwig Anzt, Leonardo Bautista-Gomez, Tommaso Benacchio, Luca Bonaventura, Hans-Joachim Bungartz, Sanjay Chatterjee, Florina M. Ciorba, Nathan DeBardeleben, Daniel Drzisga, Sebastian Eibl, Christian Engelmann, Wilfried N. Gansterer, Luc Giraud, Dominik G ̈oddeke, Marco Heisig, Fabienne Jezequel, Nils Kohl, Xiaoye Sherry Li, Romain Lion, Miriam Mehl, Paul Mycek, Michael Obersteiner, Enrique S. Quintana-Ortiz, Francesco Rizzi, Ulrich Rude, Martin Schulz, Fred Fung, Robert Speck, Linda Stals, Keita Teranishi, Samuel Thibault, Dominik Thonnes, Andreas Wagner and Barbara Wohlmuth"Postprint (author's final draft

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Resource management for extreme scale high performance computing systems in the presence of failures

    Get PDF
    2018 Summer.Includes bibliographical references.High performance computing (HPC) systems, such as data centers and supercomputers, coordinate the execution of large-scale computation of applications over tens or hundreds of thousands of multicore processors. Unfortunately, as the size of HPC systems continues to grow towards exascale complexities, these systems experience an exponential growth in the number of failures occurring in the system. These failures reduce performance and increase energy use, reducing the efficiency and effectiveness of emerging extreme-scale HPC systems. Applications executing in parallel on individual multicore processors also suffer from decreased performance and increased energy use as a result of applications being forced to share resources, in particular, the contention from multiple application threads sharing the last-level cache causes performance degradation. These challenges make it increasingly important to characterize and optimize the performance and behavior of applications that execute in these systems. To address these challenges, in this dissertation we propose a framework for intelligently characterizing and managing extreme-scale HPC system resources. We devise various techniques to mitigate the negative effects of failures and resource contention in HPC systems. In particular, we develop new HPC resource management techniques for intelligently utilizing system resources through the (a) optimal scheduling of applications to HPC nodes and (b) the optimal configuration of fault resilience protocols. These resource management techniques employ information obtained from historical analysis as well as theoretical and machine learning methods for predictions. We use these data to characterize system performance, energy use, and application behavior when operating under the uncertainty of performance degradation from both system failures and resource contention. We investigate how to better characterize and model the negative effects from system failures as well as application co-location on large-scale HPC computing systems. Our analysis of application and system behavior also investigates: the interrelated effects of network usage of applications and fault resilience protocols; checkpoint interval selection and its sensitivity to system parameters for various checkpoint-based fault resilience protocols; and performance comparisons of various promising strategies for fault resilience in exascale-sized systems

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

    Get PDF
    © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. https://doi.org/10.1145/3403956[EN] Performance and power constraints come together with Complementary Metal Oxide Semiconductor technology scaling in future Exascale systems. Technology scaling makes each individual transistor more prone to faults and, due to the exponential increase in the number of devices per chip, to higher system fault rates. Consequently, High-performance Computing (HPC) systems need to integrate prediction, detection, and recovery mechanisms to cope with faults efficiently. This article reviews fault detection, fault prediction, and recovery techniques in HPC systems, from electronics to system level. We analyze their strengths and limitations. Finally, we identify the promising paths to meet the reliability levels of Exascale systems.This work has received funding from the European Union's Horizon 2020 (H2020) research and innovation program under the FET-HPC Grant Agreement No. 801137 (RECIPE). Jaume Abella was also partially supported by the Ministry of Economy and Competitiveness of Spain under Contract No. TIN2015-65316-P and under Ramon y Cajal Postdoctoral Fellowship No. RYC-2013-14717, as well as by the HiPEAC Network of Excellence. Ramon Canal is partially supported by the Generalitat de Catalunya under Contract No. 2017SGR0962.Canal, R.; Hernández Luz, C.; Tornero-Gavilá, R.; Cilardo, A.; Massari, G.; Reghenzani, F.; Fornaciari, W.... (2020). Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives. ACM Computing Surveys. 53(5):1-32. https://doi.org/10.1145/3403956S132535Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324.Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers. IEEE Transactions on Computers, 64(2), 477-491. doi:10.1109/tc.2013.116ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest.Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33. doi:10.1109/tdsc.2004.2Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., & McIntosh-Smith, S. (2016). Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. doi:10.1109/sc.2016.54Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., & Cappello, F. (2017). Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 28(12), 3642-3655. doi:10.1109/tpds.2017.2735971M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer.P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA].F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14.F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283Chan, C. S., Pan, B., Gross, K., Vaidyanathan, K., & Rosing, T. Š. (2014). Correcting vibration-induced performance degradation in enterprise servers. ACM SIGMETRICS Performance Evaluation Review, 41(3), 83-88. doi:10.1145/2567529.2567555Chantem, T., Hu, X. S., & Dick, R. P. (2011). Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 1884-1897. doi:10.1109/tvlsi.2010.2058873Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (s. f.). Pinpoint: problem determination in large, dynamic Internet services. Proceedings International Conference on Dependable Systems and Networks. doi:10.1109/dsn.2002.1029005Chen, Z. (2011). Algorithm-based recovery for iterative methods without checkpointing. Proceedings of the 20th international symposium on High performance distributed computing - HPDC ’11. doi:10.1145/1996130.1996142Chen, Z. (2013). Online-ABFT. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP ’13. doi:10.1145/2442516.2442533Coskun, A. K., Rosing, T. S., Mihic, K., De Micheli, G., & Leblebici, Y. (2006). Analysis and Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1), 56-69. doi:10.1166/jolpe.2006.007G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119.Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., … Zilio, T. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535-553. doi:10.1016/j.adhoc.2014.11.002Dally, W. J. (1991). Express cubes: improving the performance of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 40(9), 1016-1023. doi:10.1109/12.83652Dauwe, D., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2018). Resilience-Aware Resource Management for Exascale Computing Systems. IEEE Transactions on Sustainable Computing, 3(4), 332-345. doi:10.1109/tsusc.2018.2797890R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814Di, S., & Cappello, F. (2016). Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2809-2823. doi:10.1109/tpds.2016.2517639Di, S., Guo, H., Gupta, R., Pershey, E. R., Snir, M., & Cappello, F. (2019). Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 30(2), 361-374. doi:10.1109/tpds.2018.2864184Di, S., Robert, Y., Vivien, F., & Cappello, F. (2017). Toward an Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model. IEEE Transactions on Parallel and Distributed Systems, 28(1), 244-259. doi:10.1109/tpds.2016.2546248J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer.DOWNING, S., & SOCIE, D. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31-40. doi:10.1016/0142-1123(82)90018-4Eghbalkhah, B., Kamal, M., Afzali-Kusha, H., Afzali-Kusha, A., Ghaznavi-Ghoushchi, M. B., & Pedram, M. (2015). Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits. Microelectronics Reliability, 55(8), 1152-1162. doi:10.1016/j.microrel.2015.06.004Gottscho, M., Shoaib, M., Govindan, S., Sharma, B., Wang, D., & Gupta, P. (2017). Measuring the Impact of Memory Errors on Application  Performance. IEEE Computer Architecture Letters, 16(1), 51-55. doi:10.1109/lca.2016.2599513Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., … Sengupta, S. (2011). VL2. Communications of the ACM, 54(3), 95-104. doi:10.1145/1897852.1897877Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., … Stanley, K. S. (2005). An overview of the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 397-423. doi:10.1145/1089014.1089021Hoffmann, G. A., Trivedi, K. S., & Malek, M. (2007). A Best Practice Guide to Resource Forecasting for Computing Systems. IEEE Transactions on Reliability, 56(4), 615-628. doi:10.1109/tr.2007.909764Hsiao, M. Y., Carter, W. C., Thomas, J. W., & Stringfellow, W. R. (1981). Reliability, Availability, and Serviceability of IBM Computer Systems: A Quarter Century of Progress. IBM Journal of Research and Development, 25(5), 453-468. doi:10.1147/rd.255.0453Hughes, G. F., Murray, J. F., Kreutz-Delgado, K., & Elkan, C. (2002). Improved disk-drive failure warnings. IEEE Transactions on Reliability, 51(3), 350-357. doi:10.1109/tr.2002.802886S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., … Rayes, A. (2013). A survey on resource allocation in high performance distributed computing systems. Parallel Computing, 39(11), 709-736. doi:10.1016/j.parco.2013.09.009Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html.Jha, S., Formicola, V., Martino, C. D., Dalton, M., Kramer, W. T., Kalbarczyk, Z., & Iyer, R. K. (2018). Resiliency of HPC Interconnects: A Case Study of Interconnect Failures and Recovery in Blue Waters. IEEE Transactions on Dependable and Secure Computing, 15(6), 915-930. doi:10.1109/tdsc.2017.2737537Kiciman, E., & Fox, A. (2005). Detecting Application-Level Failures in Component-Based Internet Services. IEEE Transactions on Neural Networks, 16(5), 1027-1041. doi:10.1109/tnn.2005.853411Kim, T., Sun, Z., Cook, C., Zhao, H., Li, R., Wong, D., & Tan, S. X.-D. (2016). Invited - Cross-layer modeling and optimization for electromigration induced reliability. Proceedings of the 53rd Annual Design Automation Conference. doi:10.1145/2897937.2905010Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., & Węglarz, J. (2013). DCworms – A tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory, 39, 135-151. doi:10.1016/j.simpat.2013.08.007Langou, J., Chen, Z., Bosilca, G., & Dongarra, J. (2008). Recovery Patterns for Iterative Methods in a Parallel Unstable Environment. SIAM Journal on Scientific Computing, 30(1), 102-116. doi:10.1137/040620394J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin.Laprie, J.-C. (s. f.). DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. doi:10.1109/ftcsh.1995.532603Lasance, C. J. M. (2003). Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectronics Reliability, 43(12), 1969-1974. doi:10.1016/s0026-2714(03)00183-5Yinglung Liang, Yanyong Zhang, Sivasubramaniam, A., Jette, M., & Sahoo, R. (s. f.). BlueGene/L Failure Analysis and Prediction Models. International Conference on Dependable Systems and Networks (DSN’06). doi:10.1109/dsn.2006.18Lin, T.-T. Y., & Siewiorek, D. P. (1990). Error log analysis: statistical modeling and heuristic trend analysis. IEEE Transactions on Reliability, 39(4), 419-432. doi:10.1109/24.58720Losada, N., González, P., Martín, M. J., Bosilca, G., Bouteiller, A., & Teranishi, K. (2020). Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 106, 467-481. doi:10.1016/j.future.2020.01.026Lyons, R. E., & Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6(2), 200-209. doi:10.1147/rd.62.0200M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281.Moody, A., Bronevetsky, G., Mohror, K., & de Supinski, B. (2010). Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System. doi:10.2172/984082Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf.Mulas, F., Atienza, D., Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal Balancing Policy for Multiprocessor Stream Computing Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12), 1870-1882. doi:10.1109/tcad.2009.2032372Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A., Brandolese, C., … Janssen, U. (2017). M2DC – Modular Microserver DataCentre with heterogeneous hardware. Microprocessors and Microsystems, 52, 117-130. doi:10.1016/j.micpro.2017.05.019Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126-139. doi:10.1016/j.jpdc.2017.04.015K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811Park, S.-M., & Humphrey, M. (2011). Predictable High-Performance Computing Using Feedback Control and Admission Control. IEEE Transactions on Parallel and Distributed Systems, 22(3), 396-411. doi:10.1109/tpds.2010.100Pfefferman, J. D., & Cernuschi-Frias, B. (2002). A nonparametric nonstationary procedure for failure prediction. IEEE Transactions on Reliability, 51(4), 434-442. doi:10.1109/tr.2002.804733Rangan, K. K., Wei, G.-Y., & Brooks, D. (2009). Thread motion. ACM SIGARCH Computer Architecture News, 37(3), 302-313. doi:10.1145/1555815.1555793Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf.F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680Salfner, F., Schieschke, M., & Malek, M. (2006). Predicting failures of computer systems: a case study for a telecommunication system. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi:10.1109/ipdps.2006.1639672Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd.Singh, S., & Chana, I. (2016). A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges. Journal of Grid Computing, 14(2), 217-264. doi:10.1007/s10723-015-9359-2Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., … Webb, C. F. (1999). IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2), 12-23. doi:10.1109/40.755464Sridhar, A., Sabry, M. M., & Atienza, D. (2014). A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1145-1158. doi:10.1109/tcad.2014.2323194Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J., & Gurumurthi, S. (2015). Memory Errors in Modern Systems. ACM SIGARCH Computer Architecture News, 43(1), 297-310. doi:10.1145/2786763.2694348Stathis, J. H. (2018). The physics of NBTI: What do we really know? 2018 IEEE International Reliability Physics Symposium (IRPS). doi:10.1109/irps.2018.8353539Stellner, G. (s. f.). CoCheck: checkpointing and process migration for MPI. Proceedings of International Conference on Parallel Processing. doi:10.1109/ipps.1996.508106Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3), 66-73. doi:10.1109/mcse.2010.69Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J., … Cappello, F. (2018). Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustainable Computing: Informatics and Systems, 19, 277-290. doi:10.1016/j.suscom.2018.01.004Tang, D., & Iyer, R. K. (1993). Dependability measurement and modeling of a multicomputer system. IEEE Transactions on Computers, 42(1), 62-75. doi:10.1109/12.192214D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf.Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss, S. M. (2002). Predictive algorithms in the management of computer systems. IBM Systems Journal, 41(3), 461-474. doi:10.1147/sj.413.0461Vinoski, S. (2007). Reliability with Erlang. IEEE Internet Com

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1
    • …
    corecore